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Lie groups and their representations

Lie groups are smooth finite dimensional manifolds endowed with also smooth group operation
and inversions

Example: All topologically closed subgroups of GL(n,R) and GL(n,C) (i.e., the invertible n× n
matrices over R and C) for any integers n are Lie groups.

SO(n) - orthogonal n× n matrices of determinant +1

O(n) - orthogonal n× n matrices

Sp(2n,C) - complex sympletic n× n matrices

U(n) - complex unitary n× n matrices

SU(n) - complex unitary n× n matrices of determinant +1



Lie groups and their representations

Lie groups are smooth finite dimensional manifolds endowed with also smooth group operation
and inversions

Example: All topologically closed subgroups of GL(n,R) and GL(n,C) (i.e., the invertible n× n
matrices over R and C) for any integers n are Lie groups.

Example 2: Some Lie groups are not “naturally” groups of matrices, however

(S1,+) - the circle group under angle addition

SE(2) = SO(2)⋉R2 Euclidean group of orientation preserving isometries in the plane

θ1
θ2

θ1 + θ2

(R1, v1) · (R2, v2) = (R1R2, v1 +R1v2)

where Ri ∈ SO(2) are rotations and vi ∈ R2 are translations



Lie groups and their representations

Lie groups are smooth finite dimensional manifolds endowed with also smooth group operation
and inversions

Example: All topologically closed subgroups of GL(n,R) and GL(n,C) (i.e., the invertible n× n
matrices over R and C) for any integers n are Lie groups.

Example 2: Some Lie groups are not “naturally” groups of matrices, however

(S1,+) - the circle group under angle addition

SE(2) = SO(2)⋉R2 Euclidean group of orientation preserving isometries in the plane

θ1
θ2

θ1 + θ2

(R1, v1) · (R2, v2) = (R1R2, v1 +R1v2)

where Ri ∈ SO(2) are rotations and vi ∈ R2 are translations

but they can be transformed into groups of matrices through REPRESENTATIONS

θ1 7→
(
cos θ1 − sin θ1
sin θ1 cos θ1

)

θ2 7→
(
cos θ2 − sin θ2
sin θ2 cos θ2

) θ1 + θ2 7→
(
cos θ1 − sin θ1
sin θ1 cos θ1

)
·
(
cos θ2 − sin θ2
sin θ2 cos θ2

)

(R1, v1) 7→
(

R1 v1
01×2 1

)
(R2, v2) 7→

(
R2 v2
01×2 1

) (R1, v1) · (R2, v2) 7→
(

R1 v1
01×2 1

)
·
(

R2 v2
01×2 1

)

=

(
cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

)



Lie groups and their representations

A representation of a Lie group G is a smooth group homomorphism ρ : G → GL(V ), where
GL(V ) is the set of invertible matrices over a vector space V

(equivalently, a representation is an action of G on V that is linear)

A same Lie group G may have several represenations

Ex.:
SO(2) =

{(
cos θ − sin θ
sin θ cos θ

) ∣∣∣∣θ ∈ R
}

ρ1

ρ2

{exp(2πiθ)} ⊆ SU(1)

{cos θ − sin θ 0
sin θ cos θ 0
0 0 1

}
⊆ SO(3)

A representation (π, V ) of G is irreducible if W = {0} is only proper subspace of V for
which π(G) ·W ⊆W , otherwise it is reducible

A representation (ϕ, V ) of G is completely reducible if it is the direct sum of irreducible
representations π1, . . . , πn of G

ϕ(g) = π1(g)⊕ · · · ⊕ πn(g),∀g ∈ G

(there is a basis such that ϕ(g) = diag(π1(g), . . . , πn(g)))



Lie algebras

Let Lg : G→ G be the left translation action of G onto itself, i.e., Lg(h) = g · h, and X a vector
field on G. Then X is called left-invariant if

L∗
gX = X,∀g ∈ G

The set of left-invariant vector fields on G, g is

a vector space

isomorphic to TeG

closed under Lie derivatives, i.e., if X,Y ∈ g, then LX(Y ) = [X,Y ] ∈ g

The structure (g, [·, ·]) is called the Lie algebra of G

For GL(n, F ), we have that

there is a local diffeomorphism exp : g→ G

exp is just matrix exponentiation

exp(gl(n,C)) = GL(n,C)

gl(n, F ) = Mn×n(F ) endowed with usual matrix commutation

(i.e., [X,Y ] = XY − Y X)

→ exp(tX) is a n× n invertible matrix for X ∈ gl(n, F ) = TeG



Lie algebras

Example: so(2) = t

(
0 −1
1 0

)
≈ R

SO(2) ≈ S1

so(2) ≈ R
exp

[
t

(
0 −1
1 0

)]
=

(
cos t − sin t
sin t cos t

)

exp(so(2)) = SO(2)

Example: so(3) ≈ (R3,×)

X =

0 0 0
0 0 −1
0 1 0

 Y =

 0 0 1
0 0 0
−1 0 0

 Z =

0 −1 0
1 0 0
0 0 0


exp(tXX + tY Y + tZZ) ∈ SO(3)

!!! exp(tXX + tY Y + tZZ) ̸= exp(tXX) · exp(tY Y ) · exp(tZZ)!!!



Lie algebras

G GL(V )

g gl(V ) = M(V )

ρ

dρ

exp exp

Representations of Lie groups define representations of their Lie algebras, called derived represen-
tation, where the images are matrices and the Lie brackets become commutators

Ex.:
(
cos θ
sin θ

) (
cos θ − sin θ
sin θ cos θ

)

θ

(
0 −1
1 0

)
ρ

dρ

exp
exp

(S1,+) SO(2)

R so(2)

ρ

dρ

exp exp



Lie algebras

(
cos θ − sin θ
sin θ cos θ

) cos θ − sin θ 0
sin θ cos θ 0
0 0 1



(
0 −1
1 0

) 0 −1 0
1 0 0
0 0 0



ρ

dρ

exp exp

(
cos θ − sin θ
sin θ cos θ

) 1 0 0
0 cos θ − sin θ
0 sin θ cos θ



(
0 −1
1 0

) 0 0 0
0 0 −1
0 1 0



ρ′

dρ′

exp exp

G GL(V )

g gl(V ) = M(V )

ρ

dρ

exp exp

Representations of Lie groups define representations of their Lie algebras, called derived represen-
tation, where the images are matrices and the Lie brackets become commutators

Ex.: ρ : SO(2)→ GL(3,R)

Two representations ρ1 : G → GL(n, V ) and ρ2 : G → GL(n, V ) of are equal (up to a change
of coordinates) if there is an invertible linear transformation L : Mn×n → Mn×n which preserves
commutators (i.e., L([X,Y ]) = [L(X), L(Y )])

Ex’.: ρ′ : SO(2)→ GL(3,R)

The derived representations allow to determine if two representations are the same.

Ex.:
(
cos θ
sin θ

) (
cos θ − sin θ
sin θ cos θ

)

θ

(
0 −1
1 0

)
ρ

dρ

exp
exp

(S1,+) SO(2)

R so(2)

ρ

dρ

exp exp

dρ(g) ⊂ M(V ) is the pushforward Lie algebra.

Lemma: Equal representations iff conjugated pushforward Lie algebra.



Lie algebras

G GL(V )

g gl(V ) = M(V )

ρ

dρ

exp exp

Representations of Lie groups define representations of their Lie algebras, called derived represen-
tation, where the images are matrices and the Lie brackets become commutators

Two representations ρ1 : G → GL(n, V ) and ρ2 : G → GL(n, V ) of are equal (up to a change
of coordinates) if there is an invertible linear transformation L : Mn×n → Mn×n which preserves
commutators (i.e., L([X,Y ]) = [L(X), L(Y )])

The derived representations allow to determine if two representations are the same.

Ex.:
(
cos θ
sin θ

) (
cos θ − sin θ
sin θ cos θ

)

θ

(
0 −1
1 0

)
ρ

dρ

exp
exp

(S1,+) SO(2)

R so(2)

ρ

dρ

exp exp

we may consider GLie(V, g) (resp. VLie(V, g)) as the Grasmmannian (resp. Stiefel)
varieties of representations of g in V up to this equivalence

dρ(g) ⊂ M(V ) is the pushforward Lie algebra.

Lemma: Equal representations iff conjugated pushforward Lie algebra.



Facts about compact Lie groups

1. Compact Lie groups are fully classified

+ products

+ finite extensions

2. All representations of compact Lie groups are orthogonal under some inner product

(ϕ, V ) is a rep of G ⇐⇒ there is an inner product ⟨·, ·⟩ such that, for all x, y ∈ V

and a A ∈ GL(V ) such that ϕ(g) = Aϕ′(g)A−1,∀g ∈ G

⇐⇒ there is a representation (ϕ′, V ) with ⟨x, y⟩ℓ2 = ⟨ϕ′(g)x, ϕ′(g)y⟩ℓ2
and g ∈ G, ⟨x, y⟩ = ⟨ρ(g)x, ρ(g)y⟩

3. Representations of compact Lie groups are completely reducible

(there is a basis for V such that ρ(g) = diag(π1(g), . . . , πn(g)))

4. If G is connected, then exp : g→ G is surjective



Our algorithm

The goal: Given a point cloud {xi}Ni=1 in Rn which we believe to within the orbit of a representation
ρ : G → GL(n,R) of G. We want to decompose ρ as a direct sum of irreducible representations,
i.e., there is an orthogonal change of basis A : Rn → Rn such that ρ = A(π1⊕π2⊕ · · ·⊕πk)A

−1.

Ex.: The non-trivial real irreducible representations of SO(2) are all of πn : SO(2) → GL(2,R)
and given by

πn(θ) =

(
cos(nθ) − sin(nθ)
sin(nθ) cos(nθ)

)

Any ρ : SO(2) → R2n has form ρ(θ) =


πi1(θ)

πi2(θ)

πin/2
(θ)

 up to a change of basis,

where the non-negative integers i1, . . . , in/2 are called the representation types.

Ex. 2: The non-trivial real irreducible representations of SO(3) are more complicated, but there
are, up to change of basis, one irreducible representation of SO(3) for all odd positive integers



Our algorithm

The challenge: Find this decomposition, together with the change of basis A.

The solution: Work at the Lie algebra level to find a basis {Tj}dimG
j=1 for dρ(g) and decompose

each Tj into representation types.



1. Lie theory

2. Applications of the algorithm

3. Description of the algorithm

4. Proof of robustness

5. Conclusion



Pixel Permutation Transformations

We can treat permutation of n× n pixeled images as orthogonal matrices in Rn×n

σ ∈ S(n2)

σ↑ ∈ O(n2)

the embedded images {x} ∈ Rn×n lie in a
orbit of a O(n2) representation

But special set of transformations may be within the orbit of representations of “smaller” Lie
groups

SO(2) SO(2)
SO(2)× SO(2) ≈ T 2

Lemma: If a set of n×n images {xi}Ni=0 is generated by applications of an Abelian group of rank

d to x0, then their embeddings {x↑
i }Ni=0 lie in an orbit of a SO(2)d ≈ T d representation in Rn×n.

Moreover, they are still in orbit of a SO(2)d ≈ T d representation after (smart) applications of PCA.



Pixel Permutation Transformations

Application 1: orbit completion

Upscale of initial
image

Upscale of orbit
generated

Hausdorff
distance

PCA

dimension

0.039

0.065

0.084

0.029

4

6

8

10



Harmonic analysis

Application 2: harmonic analysis

Theorem: Suppose O is an orbit of a representation of a Lie group G in Rn. Then there is a
known enumerable set of functions {f̃i : O → C}∞i=0 such that, for any continuous f : O → C,
there are {ai}∞i=0 ∈ C such that f =

∑∞
i=0 aif̃i.

f(x) = x ∗ a

x =

a =

O =

a =

f(O)

Ex.: for G = (S1,+), this reduces to the ordinary Fourier decomposition

FUNCTION

DATA

MACHINE LEARNING
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Overview of the algorithm

Input: A point cloud X = {x1 . . . , xN} ⊂ Rn and a compact Lie group G.

Output: A representation ϕ̂ of G in Rn, and an orbit Ô close to X.

Example: Let X ⊂ R4 be a 300-sample of

O =
{
(cos t, 2 sin t, cos 4t, sin 4t) | t ∈ [0, 2π)

}
.

It is an orbit of SO(2) for the representation ϕ : SO(2)→ M4(R) defined as

t 7→ diag

((
cos t −(1/2) sin t
2 sin t cos t

)
,

(
cos 4t − sin 4t
sin 4t cos 4t

))
.

We expect the algorithm to output a faithful approximation of ϕ and O.

Input Output



Overview of the algorithm

Input: A point cloud X = {x1 . . . , xN} ⊂ Rn and a compact Lie group G.

Output: A representation ϕ̂ of G in Rn, and an orbit Ô close to X.

Example: Let X ⊂ R4 be a 300-sample of

O =
{
(cos t, 2 sin t, cos 4t, sin 4t) | t ∈ [0, 2π)

}
.

It is an orbit of SO(2) for the representation ϕ : SO(2)→ M4(R) defined as

t 7→ diag

((
cos t −(1/2) sin t
2 sin t cos t

)
,

(
cos 4t − sin 4t
sin 4t cos 4t

))
.

We expect the algorithm to output a faithful approximation of ϕ and O.

(with potentially noise and anomalous points)

Output



Overview of the algorithm

Input: A point cloud X = {x1 . . . , xN} ⊂ Rn and a compact Lie group G.

Output: A representation ϕ̂ of G in Rn, and an orbit Ô close to X.

Main idea: Estimate first the pushforward Lie algebra h = dϕ(g), and deduce O through

O = ϕ(G) · x = exp(h) · x =
{
exp(A)x | A ∈ h

}
,

where x is any element of O. The algebra h is found as a Lie subalgebra of sym(O).

G Sym(O)⊂ GLn(R)

g sym(O) ⊂ gln(R)

ϕ

exp

dϕ

exp

Sym(O) = {P ∈ GLn(R) | PO = O}

sym(O) = {P ∈ gln(R) | exp(P ) ∈ Sym(O)}

Example: With O =
{
(cos t, sin t, cos 4t, sin 4t) | t ∈ [0, 2π)

}
,

Sym(O) =
{
diag

((
cos t − sin t
sin t cos t

)
,

(
cos 4t − sin 4t
sin 4t cos 4t

))
| t ∈ [0, 2π)

}
.

sym(O) =
{
diag

((
0 −t
t 0

)
,

(
0 −4t
4t 0

))
| t ∈ R

}
.



Overview of the algorithm

Input: A point cloud X = {x1 . . . , xN} ⊂ Rn and a compact Lie group G.

Output: A representation ϕ̂ of G in Rn, and an orbit Ô close to X.

Main idea: Estimate first the pushforward Lie algebra h = dϕ(g), and deduce O through

O = ϕ(G) · x = exp(h) · x =
{
exp(A)x | A ∈ h

}
,

where x is any element of O. The algebra h is found as a Lie subalgebra of sym(O).

Step 1: Orthonormalization Apply dimension reduction and orthonormalization.

Step 2: Lie-PCA Diagonalize the Lie-PCA operator Λ: Mn(R)→ Mn(R).

Step 3: Closest Lie algebra Estimate ĥ through an optimization program over O(n).

Step 4: Generate the orbit Deduce Ôx = exp(ĥ) and check that it is close to X.

G Sym(O)⊂ GLn(R)

g sym(O) ⊂ gln(R)

ϕ

exp

dϕ

exp

Sym(O) = {P ∈ GLn(R) | PO = O}

sym(O) = {P ∈ gln(R) | exp(P ) ∈ Sym(O)}



Step 1: Orthonormalization

We wish to normalize the orbit O so as to make ϕ an orthogonal representation,

i.e., such that ϕ takes values in O(n),

i.e., such that O lies in a sphere of a certain radius.

Fact: there exists a positive-definite matrix M such that the conjugated representation MϕM−1

is orthogonal. Orbits are obtained by left translation by M .

We find M as the square root of the Moore-Penrose pseudo-inverse of covariance matrix:

Example: With M = 1√
2
diag

(
1, 1/2, 1, 1

)
,

O =
{
(cos t, 2 sin t, cos 4t, sin 4t) | t ∈ [0, 2π)

}
.

ϕ : t 7→ diag

((
cos t −(1/2) sin t
2 sin t cos t

)
,

(
cos 4t − sin 4t
sin 4t cos 4t

))

MϕM−1 : t 7→ diag

((
cos t sin t
sin t cos t

)
,

(
cos 4t − sin 4t
sin 4t cos 4t

))

MO =
{

1√
2
(cos t, sin t, cos 4t, sin 4t) | t ∈ [0, 2π)

}
.

M =
√
Σ[X]+ where Σ[X] = 1

N

∑N
i=1 xix

⊤
i .



Step 1: Orthonormalization

Dimension reduction: In addition, we apply PCA to X.
Let ϵ be parameter, and Π>ϵ

Σ[X] be the projection matrix on the subspace of Rn spanned by the

eigenvectors of Σ[X] of eigenvalue greater than ϵ. We set X ← Π>ϵ
Σ[X]X.

� reducing the computational cost of the next steps,
� avoiding numerical errors, when computing the pseudo-inverse of Σ[X],
� ensuring that we will estimate non-trivial representations.

This has the effect of:

Intrinsic and extrinsic symmetries: Given a Riemannian manifoldM isometrically embedded in
Rn, define

� Isom(M): the set of diffeomorphismsM→M that preserves the metric,
� Sym(M) = {P ∈ GLn(R) | PM =M}.

By restricting the action of the matrices P toM, we obtain a group homomorphism

Sym(M)→ Isom(M).

It may not be injective, since certain matrices P may act trivially onM.
This is avoided by projectingM into the subspace is spans.



Step 2: Lie-PCA

Lie-PCA operator: Λ: Mn(R)→ Mn(R) is defined as

We wish to estimate sym(O) = {P ∈ gln(R) | exp(P ) ∈ Sym(O)}.

A solution has been proposed in [Cahill, Mixon, Parshall, Lie PCA: Density estimation for
symmetric manifolds, Applied and Computational Harmonic Analysis, 2023].

Λ(A) =
∑

1≤i≤N

Π̂
[
Nxi

X
]
·A ·Π

[
⟨xi⟩

]
� Π̂

[
NxiX

]
estimation of projection matrices on the normal spaces NxiO,

� Π
[
⟨xi⟩

]
’s are the projection matrices on the lines ⟨xi⟩.

In practice, we find Π̂
[
Nxi

X
]
via local PCA.

where

Facts: (1) Λ is symmetric. (2) The kernel of Λ is approximately sym(O).

We can find sym(O) as the subspace spanned by the bottom eigenvectors of λ.

Example: The eigenvalues of Λ on O =
{
(cos t, sin t, cos 4t, sin 4t) | t ∈ [0, 2π)

}
are

0.001, 0.102, 0.109, 0.112, 0.135, 0.145, 0.156, 0.212,

0.212, 0.233, 0.236, 0.247, 0.249, 0.259, 0.296, 0.296.



Step 2: Lie-PCA

Lie-PCA operator: Λ: Mn(R)→ Mn(R) is defined as

We wish to estimate sym(O) = {P ∈ gln(R) | exp(P ) ∈ Sym(O)}.

A solution has been proposed in [Cahill, Mixon, Parshall, Lie PCA: Density estimation for
symmetric manifolds, Applied and Computational Harmonic Analysis, 2023].

Λ(A) =
∑

1≤i≤N

Π̂
[
Nxi

X
]
·A ·Π

[
⟨xi⟩

]
� Π̂

[
NxiX

]
estimation of projection matrices on the normal spaces NxiO,

� Π
[
⟨xi⟩

]
’s are the projection matrices on the lines ⟨xi⟩.

In practice, we find Π̂
[
Nxi

X
]
via local PCA.

where

Example:

X

eigenvalues



Step 2: Lie-PCA

Derivation of Lie-PCA: Based on the fact that

sym(O) =
⋂
x∈O

SxO where SxO = {A ∈ Mn(R) | Ax ∈ TxO},
where TxO denotes the tangent space of O at x. In other words,

sym(O) =
{
A ∈ Mn(R) | ∀x ∈ O, Ax ∈ TxO

}

Using only the point cloud X = {x1, . . . , xN}, we consider

N⋂
i=1

Sxi
O = ker

( N∑
i=1

Π
[
(Sxi
O)⊥

])
,

Besides, the authors show that

Π
[
(Sxi
O)⊥

]
(A) = Π

[
Nxi
O
]
·A ·Π

[
⟨xi⟩

]
.

One naturally puts

Λ(A) =
N∑
i=1

Π̂
[
Nxi

X
]
·A ·Π

[
⟨xi⟩

]
where Π̂

[
Nxi

X
]
is an estimation of Π

[
Nxi
O
]
computed from the observation X.



Step 3: Closest Lie algebra

In the original Lie-PCA, the authors propose to estimate sym(O) as ⟨A1, . . . , Ad⟩, the linear sub-
space of Mn(R) spanned by the d bottom eigenvectors of Λ.
But:

We will suppose that d = dim(sym(O)) is known. General case studied in our paper.

(2) ⟨A1, . . . , Ad⟩ may not be close under Lie bracket [A,B] = AB −BA.

(1) ⟨A1, . . . , Ad⟩ may not be a Lie algebra pushforward of g:

A1 =


0 −2.3 0 0
2.3 0 0 0
0 0 0 −5.5
0 0 5.5 0



0 −2 0 0
2 0 0 0
0 0 0 −5
0 0 5 0



0 −1 0 0
1 0 0 0
0 0 0 −3
0 0 3 0

≈
?

or

Solution: Project ⟨A1, . . . , Ad⟩ to the closest Lie algebra pushforward of g

argmin
∥∥Π[
⟨Ai⟩di=1

]
−Π

[
ĥ
]∥∥ s.t. ĥ ∈ G(G, so(n)),

where � Π
[
⟨Ai⟩di=1

]
and Π

[
ĥ
]
are projection matrices, seen as operators on Mn(R),

�

∥∥Π[
⟨Ai⟩di=1

]
−Π

[
ĥ
]∥∥ is the distance on the Grassmannian of d-planes in Mn(R),

� G(G, so(n)), the set of Lie subalgebras of so(n) coming from an almost-faithful
representation of G in Rn



Step 3: Closest Lie algebra

Reformulation: The minimization program

argmin
∥∥Π[
⟨Ai⟩di=1

]
−Π

[
ĥ
]∥∥ s.t. ĥ ∈ G(G, so(n)),

is equivalent to

argmin
∥∥Π[
⟨Ai⟩di=1

]
−Π

[
⟨Odiag(Bk

i )
p
k=1O

⊤⟩di=1

]∥∥ s.t.

{
(B1, . . . , Bp) ∈ orb(G,n),

O ∈ O(n).

where orb(G,n) is a choice of representatives in the moduli space of orbit-equivalence of almost-
faithful representation of G in Rn.

This program naturally splits into |orb(G,n)| minimization problems over O(n). In practice, we
perform the minimizations via by gradient descent (package Pymanopt).

Example: We still consider O =
{
(cos t, sin t, cos 4t, sin 4t) | t ∈ [0, 2π)

}
. The representations of

SO(2) on R4 take the form

ϕu ⊕ ϕv(t) = diag

((
cosut − sinut
sinut cosut

)
,

(
cos vt − sin vt
sin vt cos vt

))
.

Result of minimization:

Weights (0, 1) (1, 2) (1, 3) (1, 4) (2, 3) (3, 4)
Costs 0.004 0.002 0.002 4.29× 10−5 0.006 0.008



Step 3: Closest Lie algebra

Reformulation: The minimization program

argmin
∥∥Π[
⟨Ai⟩di=1

]
−Π

[
ĥ
]∥∥ s.t. ĥ ∈ G(G, so(n)),

is equivalent to

argmin
∥∥Π[
⟨Ai⟩di=1

]
−Π

[
⟨Odiag(Bk

i )
p
k=1O

⊤⟩di=1

]∥∥ s.t.

{
(B1, . . . , Bp) ∈ orb(G,n),

O ∈ O(n).

where orb(G,n) is a choice of representatives in the moduli space of orbit-equivalence of almost-
faithful representation of G in Rn.

This program naturally splits into |orb(G,n)| minimization problems over O(n). In practice, we
perform the minimizations via by gradient descent (package Pymanopt).

Example: We consider a sample X of an orbit O ⊂ R6 of the 2-torus T 2. Its pushforward Lie
algebras are in correspondence with 2-dimensional primitive integral lattices of Z3.

Type
(
0 1 1
2 −2 1

) (
1 1 2
−2 2 −1

) (
0 1 2
2 −2 −1

) (
0 1 1
1 −2 0

) (
0 1 1
1 −2 −1

) (
0 1 2
2 −2 1

)
Costs 0.036 0.136 0.198 0.233 0.244 0.312
Type

(
0 1 2
1 −2 −2

) (
0 1 2
1 −2 −1

) (
1 2 2
−2 −2 1

) (
1 1 1
−2 −1 2

) (
0 1 2
1 −2 0

) (
0 1 1
1 −2 1

)
Costs 0.331 0.348 0.388 0.447 0.457 0.472



Step 4: Generate the orbit

We have calculated a representation ϕ̂ : G→ SO(n) whose pushforward Lie algebra ĥ is closest to
that of X.
We now exponentiate it: let x ∈ X arbitrary and

Ôx = ϕ̂(G) · x =
{
exp(A)x | A ∈ ĥ

}
.

Hausdorff distance: In order to quantify the quality of our estimation, we compute the one-sided
Hausdorff distance dH

(
X|Ôx

)
.

In practice, it is enough to compute

Ôx =
{
exp(A)x | A ∈ h, ∥A∥ ≤ δ × diam(G)

}
where diam(G) is the diameter of G (endowed with a bi-invariant Riemannian structure) and δ is

a Lispchitz constant for ϕ̂.

Wasserstein distance: Hausdorff distance is not suited when X has anomalous points. In this
case, we consider

µÔ =
1

N

N∑
i=1

µÔxi
with µÔxi

uniform measure on Ôxi
,

and compute the Wasserstein distance W2

(
µX , µÔ

)
.



Toy examples

Rep of SO(2) with noise: Let X be a 300-sample of

to which we add an additive Gaussian noise (σ = 0.03) and 30 points uniformly in [−1, 1]4.
O =

{
(cos t, 2 sin t, cos 4t, sin 4t) | t ∈ [0, 2π)

}

The algorithm, with G = SO(2), retrieves successfully the representation ϕ1 ⊕ ϕ4.

On the other hand, the Wasserstein distance is W2

(
µX , µÔ

)
≈ 0.392.

However, with an arbitrary x ∈ X, we obtain the Hausdorff distance dH
(
X|Ôx

)
≈ 1.128.

To visualize µÔ, we consider a Gaussian kernel density estimator f : R4 → [0,+∞) (bandwidth
0.1) and represent the sublevel set f−1([0.5,+∞)).



Toy examples

Rep of T 2 in R6: Let X be a uniform 750-sample of an orbit of the representation ϕ(1,1)⊕ϕ(1,2)⊕
ϕ(2,1) of the torus T2 in R6.

We apply the algorithm with G = T 2 on X, and restrict the representations to those with weights
at most 2.

The algorithm’s output is
(
0 1 1
2 −2 1

)
, that is, the representation ϕ(0,2) ⊕ ϕ(1,−2) ⊕ ϕ(1,1). Moreover,

dH
(
X|Ôx

)
≈ 0.071.

Type
(
0 1 1
2 −2 1

) (
1 1 2
−2 2 −1

) (
0 1 2
2 −2 −1

) (
0 1 1
1 −2 0

) (
0 1 1
1 −2 −1

) (
0 1 2
2 −2 1

)
Costs 0.036 0.136 0.198 0.233 0.244 0.312
Type

(
0 1 2
1 −2 −2

) (
0 1 2
1 −2 −1

) (
1 2 2
−2 −2 1

) (
1 1 1
−2 −1 2

) (
0 1 2
1 −2 0

) (
0 1 1
1 −2 1

)
Costs 0.331 0.348 0.388 0.447 0.457 0.472

Eigenvalues of Lie-PCA operator



Toy examples

Orthogonal group in R9: Let X be a 3000-sample of the 3 × 3 special orthogonal matrices
embedded in R9.

We expect to estimate a nontrivial representation of SO(3), since it acts transitively on itself. The
algorithm yields:

Representation (3, 5) (3, 3, 3) (4, 5) (8) (5) (7)
Cost 2× 10−5 4× 10−5 0.001 0.001 0.03 0.004

Representation (9) (3, 3) (3, 4) (4, 4) (3) (4)
Cost 0.004 0.006 0.007 0.009 0.011 0.013

The optimum is given by the partition (3, 5). However dH
(
X|Ôx

)
≈ 2.658.

In comparison, the distance from the orbit to X is small: dH
(
Ôx|X

)
≈ 0.543.

This indicates that the representation is not transitive on X.

Next, consider the representation (3, 3, 3). We obtain dH
(
X|Ôx

)
≈ 0.061.

The irreps of SU(2) and SO(3) in Rn are parametrized by the partitions of n.
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Stability

Input:

Step 1:

Step 2:

Step 3:

Step 4:

X = {x1 . . . , xN} ⊂ Rn and G compact Lie group

Orthonormalization via X ←
√

Σ[X]+ ·Π>ϵ
Σ[X] ·X.

Diagonalize the operator Λ: A 7→
∑N

i=1 Π̂
[
Nxi

X
]
·A ·Π

[
⟨xi⟩

]

Solve argminĥ
∥∥Π[
⟨Ai⟩di=1

]
−Π

[
ĥ
]∥∥ with (Ai)

d
i=1 bottom eigenvectors of Λ

Output Ôx =
{
exp(A)x | A ∈ ĥ

}

with Σ[X] covariance matrix, and Π>ϵ
Σ[X] projection on eigenvectors > ϵ.

where A ∈ Mn(R), and Π̂
[
Nxi

X
]
estimation of projection on normal space of X.

where ĥ ∈ G(g, so(n)) Grassmann variety of Lie subalgebras pushforward of G.

where x ∈ X is an arbitrary point.

Goal: Show that Ôx is stable with respect to X



Stability

Input:

Step 1:

Step 2:

Step 3:

Step 4:

X = {x1 . . . , xN} ⊂ Rn and G compact Lie group

Orthonormalization via X ←
√

Σ[X]+ ·Π>ϵ
Σ[X] ·X.

Diagonalize the operator Λ: A 7→
∑N

i=1 Π̂
[
Nxi

X
]
·A ·Π

[
⟨xi⟩

]

Solve argminĥ
∥∥Π[
⟨Ai⟩di=1

]
−Π

[
ĥ
]∥∥ with (Ai)

d
i=1 bottom eigenvectors of Λ

Output Ôx =
{
exp(A)x | A ∈ ĥ

}

µ measure on Rn. E.g., µX empirical measure, µO uniform (pushforward of Haar measure).

µ←
√

Σ[µ]+ ·Π>ϵ
Σ[µ] · µ.

Λ[µ] : A 7→
∫ N

i=1
Π̂
[
NxiX

]
·A ·Π

[
⟨xi⟩

]
dµ

Goal: Show that Ôx is stable with respect to X

W2

(
µ Ôx

, µO
)
“ ≤ ”W2(µX , µO)

argminĥ
∥∥Π[
⟨Ai⟩di=1

]
−Π

[
ĥ
]∥∥ with (Ai)

d
i=1 bottom eigenvectors of Λ[µ]

µÔx
= exp(ĥ) · µ

Show that W2

(
µ Ôx

, ν Ôy

)
“ ≤ ” W2(µ, ν)



Stability

Why working with Wasserstein and not Hausdorff?

� Allows noise and anomalous points

� Everything translates nicely in the measure formalism

� PCA is not stable is Hausdorff

We shall aim for an explicit bound A ≤ B. This is different from other statistical formalisms.
In particular, no law of large numbers.



Robustness

Theorem: Let G be a compact Lie group of dimension d, O an orbit of an almost-faithful rep-
resentation of it in Rn, potentially non-orthogonal, and l its dimension. Let µO be the uniform
measure on O, and µÕ that on the orthonormalized orbit.

Besides, let X ⊂ Rn be a finite point cloud and µX its empirical measure. Let µÔ be the output
of the algorithm.

Under technical assumptions, it holds that

W2

(
µÔ, µÕ

)
≤ 1√

2

W2(µX , µO)

σmin
+ 3
√
dn

(
ρ

λ

)1/2(
r + 4

(
ω̃

rl+1

)1/2)1/2

where

� σ2
max, σ

2
min the top and bottom nonzero eigenvalues of the covariance matrix Σ[µO]

� ρ =

(
16l(l + 2)6l

)
max(vol(Õ),vol(Õ)−1)

min(1,reach(Õ))

� ω̃ = 4(n+ 1)3/2
(

σ3
max

σ3
min

)(
ω(υ + ω)

)1/2

with ω = W2(µO,µX)
σmin

and υ =

(
V
[
∥µO∥

]
σ2
min

)1/2

� r is the radius of local PCA (estimation of tangent spaces)



Robustness

Theorem: Let G be a compact Lie group of dimension d, O an orbit of an almost-faithful rep-
resentation of it in Rn, potentially non-orthogonal, and l its dimension. Let µO be the uniform
measure on O, and µÕ that on the orthonormalized orbit.

Besides, let X ⊂ Rn be a finite point cloud and µX its empirical measure. Let µÔ be the output
of the algorithm.

Under technical assumptions, it holds that

W2

(
µÔ, µÕ

)
≤ 1√

2

W2(µX , µO)

σmin
+ 3
√
dn

(
ρ

λ

)1/2(
r + 4

(
ω̃

rl+1

)1/2)1/2

where

� σ2
max, σ

2
min the top and bottom nonzero eigenvalues of the covariance matrix Σ[µO]

� ρ =

(
16l(l + 2)6l

)
max(vol(Õ),vol(Õ)−1)

min(1,reach(Õ))

� ω̃ = 4(n+ 1)3/2
(

σ3
max

σ3
min

)(
ω(υ + ω)

)1/2

with ω = W2(µO,µX)
σmin

and υ =

(
V
[
∥µO∥

]
σ2
min

)1/2

� r is the radius of local PCA (estimation of tangent spaces)

≲ r1/2 +

(
W2(µO, µX)1/2

rl+1

)1/4
bias-variance trade-off when es-
timating tangent spaces



Robustness

Technical assumptions: Define the quantities

Suppose that ω is small enough, so as to satisfy

Choose two parameters ϵ and r in the following nonempty sets:

Moreover, we suppose that

� the minimization problems are computed exactly,

� sym(O) is spanned by matrices whose spectra come from primitive integral vectors of coordinates
at most ωmax,

� G = Sym(O).

ω =
W2(µO, µX)

σmin
, υ =

(V
[
∥µO∥

]
σ2
min

)1/2

,

ω̃ = 4(n+ 1)3/2
(
σ3
max

σ3
min

)(
ω(υ + ω)

)1/2

, ρ =

(
16l(l + 2)6l

)
max(vol(Õ), vol(Õ)−1)

min(1, reach(Õ))
,

γ =
(
4(2d+ 1)

√
2
)−1 · λ · Γ(G,n, ωmax) (rigidity constant of Lie subalgebras)

ω <

((
υ2 +

1

2

)1/2

− υ

)/(
3(n+ 1)

σ2
max

σ2
min

)
, ω̃ ≤ min

{(
1

6ρ

)3(l+1)

,
γl+3

16
,

(
γ

(6ρ)2

)l+1}
.

ϵ ∈
(
(2υ + ω)ωσ2

min,
1

2
σ2
min

]
, r ∈

[(
6ρ

)2 · ω̃1/(l+1),
(
6ρ

)−1
]
∩
[(

4/γ
)2/(l+1) · ω̃1/(l+1), γ

]
.



Orthonormalization

Ideal covariance matrix: Suppose that O is an orbit of the representation ϕ : G → Mn(R), and
µO the uniform measure on it. With x0 ∈ O an arbitrary point, the covariance matrix can be
written

Σ[µO] =

∫ (
ϕ(g)x0

)
·
(
ϕ(g)x0

)⊤
dµG(g).

Now, let Rn =
⊕m

i=1 Vi be the decomposition of ϕ into irreps, and denote as (Π
[
Vi

]
)mi=1 the

projection matrices on these subspaces. We can decompose

Σ[µO] =
m∑
i=1

Ci where Ci =

∫
ϕi(g)

(
Π
[
Vi

]
(x0) ·Π

[
Vi

]
(x0)

⊤
)
ϕi(g)

⊤dµG(g).

If ϕ is orthogonal, then by Schur’s lemma, the Ci are homotheties:

Σ[µO] =

m∑
i=1

σ2
iΠ

[
Vi

]
where σ2

i =

∥∥Π[
Vi

]
(x0)

∥∥2
dim(Vi)

.

This shows that, in general, important quantities are:

� The variance V[∥µO∥], a measure of deviation from orthogonality of O
� The ratio σ2

max/σ
2
min, a measure of homogeneity of O.



Orthonormalization

Proposition: Let O ⊂ Rn be the orbit of a representation, potentially non-orthogonal, µO its
uniform measure, Π

[
⟨O⟩

]
the projection on its span, and σ2

max, σ
2
min the top and bottom nonzero

eigenvalues of Σ[µO].

Besides, let ν be a measure, Σ[ν] its covariance matrix, ϵ > 0 and Π>ϵ
Σ[ν] the projection on the

subspace spanned by eigenvectors with eigenvalue at least ϵ.

If W2(µO, ν) is small enough, then we have the following bound between the pushforward measures
after Step 1:

W2

(√
Σ[µO]+Π

[
⟨O⟩

]
µO,

√
Σ[ν]+Π>ϵ

Σ[ν]ν

)
≤ 8(n+ 1)3/2

(
σ3
max

σ3
min

)(
W2(µO, ν)

σmin

)1/2((V
[
∥µO∥

]
σ2
min

)1/2

+
W2(µO, ν)

σmin

)1/2

.

Proof: Consequence of Davis-Kahan theorem, together with

∥∥Σ[µO]
−1/2 − Σ[ν]−1/2

∥∥
op
≤
√
2

σ2
min

·
(
2V

[
∥µO∥

]1/2
+W2(µO, ν)

)1/2

·W2(µO, ν)
1/2.



Lie-PCA

Ideal Lie-PCA: Suppose that O is an orbit of the representation ϕ : G → Mn(R), and µO the
uniform measure on it. We define

ΛO(A) =

∫
Π
[
NxO

]
·A ·Π

[
⟨x⟩

]
dµO(x).

Proposition: Its kernel is eual to sym(O). Moreover, when O = Sn−1, its nonzero eigenvalues are
exactly δn and δ′n where

δn =
2(n− 1)

n(n(n+ 1)− 2)
and δ′n =

1

n
.

Proof: Show that ΛO is equivariant with respect to the action of G by conjugation:

ϕ(g)Λ(A)ϕ(g)−1 = Λ

(
ϕ(g)Aϕ(g)−1

)
Then use Schur’s lemma.

Empirical observation: More generally, the nonzero eigenvalues of ΛO belong to [1/n2, 1/n] when
O is homogenous, i.e., σ2

max/σ
2
min = 1.



Lie-PCA

Stability: Comparing

Λ(A) =
∑

1≤i≤N

Π̂
[
Nxi

X
]
·A ·Π

[
⟨xi⟩

]
and ΛO(A) =

∫
Π
[
NxO

]
·A ·Π

[
⟨x⟩

]
dµO(x).

amounts to quantifying the quality of normal space estimation. We use local PCA:

Π̂
[
NxiX

]
= I −Πl,r

xi
[X],

where Πl,r
xi
[X] is the projection matrix on any l top eigenvectors of the local covariance matrix

Σr
xi
[X] centered at xi and at scale r, itself defined as

Σr
xi
[X] =

1

|Y |
∑
y∈Y

(y − xi)(y − xi)
⊤,

where Y = {y ∈ X | ∥y − xi∥ ≤ r}, the set input points at distance at most r from xi.

Measure-theoretic formulation: If µ is a measure on Rn, we define its local covariance matrix
centered at x at scale r as

Σr
x[µ] =

∫
B(x,r)

(y − x)(y − x)⊤
dµ(x)

µ(B(x, r))
.



Lie-PCA

Bias-variance tradeoff: Let µM be measure on a submanifoldM⊂ Rn of dimension l, x ∈ M,
ν a measure on Rn and y ∈ supp(ν). We decompose

∥∥∥∥ 1

l + 2
Π
[
TxM

]
− 1

r2
Σr

y[ν]

∥∥∥∥
F

≤∥∥∥∥ 1

l + 2
Π
[
TxM

]
− 1

r2
Σr

x[µM]

∥∥∥∥
F︸ ︷︷ ︸

consistency

+

∥∥∥∥ 1

r2
Σr

x[µM]− 1

r2
Σr

y[µM]

∥∥∥∥
F︸ ︷︷ ︸

spatial stability

+

∥∥∥∥ 1

r2
Σr

y[µM]− 1

r2
Σr

y[ν]

∥∥∥∥
F︸ ︷︷ ︸

measure stability

Lemma: If the parameters are chosen correctly, this is

≲ r + ∥x− y∥+
(
W2(µ, ν)

rl+1

) 1
2

.

Corollary: We deduce a bound between Lie-PCA operators:

∥ΛO − Λ∥op ≤
√
2ρ

(
r + 4

(
W2(µO, µX)

rl+1

)1/2)
.



Rigidity of Lie subalgebras

In Step 3, we consider the bottom eigenvectors A1, . . . , Ad of Lie-PCA, and solve

argmin
∥∥Π[
⟨Ai⟩di=1

]
−Π

[
ĥ
]∥∥ s.t. ĥ ∈ G(G, so(n)),

where G(G, so(n)) is the subspace of so(n) consisting of the Lie subalgebras pushforward of g by
a representation.

The set G(G, so(n)) has many connected components, one for each orbit-equivalence class of
representations.

Let h be the actual subalgebra we are looking for. We want to make sure that the minimizer belongs
to the connected component of h.

The distance from ⟨Ai⟩di=1 to h must be lower than the reach of G(G, so(n)). In this context, it is
related to the rigidity of h.

Lemma: Consider the subset of G(G, so(n)) with weights at most ωmax. Then its ridigity satisfies

h

⟨Ai⟩di=1

Γ(G,n, ωmax) ≥ 4/(nω2
max).
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Conclusion



Next goals

Lie based interporlation: development of newer computer vision techniques for both interpolation and analysis

G-conv nets: there are neural networks architectures invariant to representations of Lie group that may allow for incorporating our algorithm as a detection step



Next goals

Application to Hamiltonian mechanics: Noether’s theorem pedicts that every conserved quantity is related to an action of a Lie group G on a sympletic manifoldM
called the phase space

Extension to actions on manifolds: suppose G has an action ρ : G → Diff(M) on a manifold M . Then this extends to an infinite dimensional representation
ρ̃ : G → GL(F(M)), the set of smooth maps f : M → R. This defines a representation dρ̃ which maps the Lie algebra elements g to a subspace of the infinite
dimensional Lie algebra of vector fields X (M) with Lie derivatives as brackets

G GL(F(M))

g gl((F(M)) = X (M)

ρ̃

dρ̃

exp exp
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