Séminaire Datashape - 31/01/2024

DETECTION OF REPRESENTATION ORBITS OF COMPACT LIE GROUPS FROM POINT CLOUDS

Henrique Ennes - DataShape/COATI (Sophia Antipolis) Raphaël Tinarrage - EMAp/FGV (Rio de Janeiro)

The orbit completion problem

The orbit completion problem

- 1. Lie theory
- 2. Applications of the algorithm
- 3. Description of the algorithm
- 4. Proof of robustness
- 5. Conclusion

1. Lie theory

- 2. Applications of the algorithm
- 3. Description of the algorithm
- 4. Proof of robustness
- 5. Conclusion

Lie groups are smooth finite dimensional manifolds endowed with also smooth group operation and inversions

Example: All topologically closed subgroups of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$ (i.e., the invertible $n \times n$ matrices over \mathbb{R} and \mathbb{C}) for any integers n are Lie groups.

- O(n) orthogonal $n \times n$ matrices
- SO(n) orthogonal $n \times n$ matrices of determinant +1
- $\operatorname{Sp}(2n,\mathbb{C})$ complex sympletic $n \times n$ matrices
- U(n) complex unitary $n \times n$ matrices
- SU(n) complex unitary $n \times n$ matrices of determinant +1

Lie groups are smooth finite dimensional manifolds endowed with also smooth group operation and inversions

Example: All topologically closed subgroups of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$ (i.e., the invertible $n \times n$ matrices over \mathbb{R} and \mathbb{C}) for any integers n are Lie groups.

Example 2: Some Lie groups are not "naturally" groups of matrices, however

• $(S^1, +)$ - the circle group under angle addition

• $SE(2) = SO(2) \ltimes \mathbb{R}^2$ Euclidean group of orientation preserving isometries in the plane

 $(R_1, v_1) \cdot (R_2, v_2) = (R_1 R_2, v_1 + R_1 v_2)$

where $R_i \in SO(2)$ are rotations and $v_i \in \mathbb{R}^2$ are translations

Lie groups are smooth finite dimensional manifolds endowed with also smooth group operation and inversions

Example: All topologically closed subgroups of $GL(n, \mathbb{R})$ and $GL(n, \mathbb{C})$ (i.e., the invertible $n \times n$ matrices over \mathbb{R} and \mathbb{C}) for any integers n are Lie groups.

Example 2: Some Lie groups are not "naturally" groups of matrices, however but they can be transformed into groups of matrices through **REPRESENTATIONS**

• $(S^1, +)$ - the circle group under angle addition

• $SE(2) = SO(2) \ltimes \mathbb{R}^2$ Euclidean group of orientation preserving isometries in the plane

$$(R_1, v_1) \cdot (R_2, v_2) = (R_1 R_2, v_1 + R_1 v_2) \qquad \begin{array}{c} (R_1, v_1) \mapsto \begin{pmatrix} R_1 & v_1 \\ \mathbf{0}_{1 \times 2} & \mathbf{1} \end{pmatrix} \\ (R_2, v_2) \mapsto \begin{pmatrix} R_2 & v_2 \\ \mathbf{0}_{1 \times 2} & \mathbf{1} \end{pmatrix} (R_1, v_1) \cdot (R_2, v_2) \mapsto \begin{pmatrix} R_1 & v_1 \\ \mathbf{0}_{1 \times 2} & \mathbf{1} \end{pmatrix} \cdot \begin{pmatrix} R_2 & v_2 \\ \mathbf{0}_{1 \times 2} & \mathbf{1} \end{pmatrix}$$

where $R_i \in SO(2)$ are rotations and $v_i \in \mathbb{R}^2$ are translations

A representation of a Lie group G is a smooth group homomorphism $\rho : G \to GL(V)$, where GL(V) is the set of invertible matrices over a vector space V

(equivalently, a representation is an action of G on V that is linear)

A same Lie group G may have several representations

- A representation (π, V) of G is **irreducible** if $W = \{0\}$ is only proper subspace of V for which $\pi(G) \cdot W \subseteq W$, otherwise it is **reducible**
- A representation (ϕ, V) of G is **completely reducible** if it is the direct sum of irreducible representations π_1, \ldots, π_n of G

$$\phi(g) = \pi_1(g) \oplus \cdots \oplus \pi_n(g), \forall g \in G$$

(there is a basis such that $\phi(g) = diag(\pi_1(g), \dots, \pi_n(g))$)

Let $L_g: G \to G$ be the left translation action of G onto itself, i.e., $L_g(h) = g \cdot h$, and X a vector field on G. Then X is called left-invariant if

$$L_g^*X = X, \forall g \in G$$

The set of left-invariant vector fields on G, \mathfrak{g} is

- a vector space
- $_{ullet}$ isomorphic to T_eG
- closed under Lie derivatives, i.e., if $X, Y \in \mathfrak{g}$, then $\mathcal{L}_X(Y) = [X, Y] \in \mathfrak{g}$
- \bullet there is a local diffeomorphism $\exp: \mathfrak{g} \to G$

The structure $(\mathfrak{g}, [\cdot, \cdot])$ is called the **Lie algebra** of G

For $\operatorname{GL}(n, F)$, we have that

- $\mathfrak{gl}(n, F) = M_{n \times n}(F)$ endowed with usual matrix commutation (i.e., [X, Y] = XY - YX)
- $\bullet \; exp$ is just matrix exponentiation

 $\rightarrow \exp(tX)$ is a $n\times n$ invertible matrix for $X\in \mathfrak{gl}(n,F)=T_eG$

 $\bullet \exp(\mathfrak{gl}(n,\mathbb{C})) = \mathrm{GL}(n,\mathbb{C})$

Example:
$$\mathfrak{so}(2) = t \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \approx \mathbb{R}$$
$$\exp\left[t \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\right] = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$$
$$\exp(\mathfrak{so}(2)) = SO(2)$$

Example: $\mathfrak{so}(3) \approx (\mathbb{R}^3, \times)$

$$X = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \qquad Y = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} \qquad \qquad Z = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $\exp(t_X X + t_Y Y + t_Z Z) \in \mathrm{SO}(3)$

 $!!!\exp(t_X X + t_Y Y + t_Z Z) \neq \exp(t_X X) \cdot \exp(t_Y Y) \cdot \exp(t_Z Z)!!!$

Representations of Lie groups define representations of their Lie algebras, called **derived representation**, where the images are matrices and the Lie brackets become commutators

Representations of Lie groups define representations of their Lie algebras, called **derived representation**, where the images are matrices and the Lie brackets become commutators

$$\begin{array}{ccc} G & \stackrel{\rho}{\longrightarrow} \operatorname{GL}(V) & \operatorname{Ex.:} & (S^{1}, +) & \stackrel{\rho}{\longrightarrow} \operatorname{SO}(2) & \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix} \xrightarrow{\rho} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \\ \stackrel{\exp\uparrow}{\longrightarrow} & \exp\uparrow & \exp\uparrow & \exp\uparrow & \exp\uparrow \\ \mathfrak{g} & \stackrel{d\rho}{\longrightarrow} \mathfrak{gl}(V) = \operatorname{M}(V) & & & & & & \\ \mathbb{R} & \stackrel{d\rho}{\longrightarrow} \mathfrak{so}(2) & & & & & & \\ \end{array}$$

 $d\rho(\mathfrak{g}) \subset M(V)$ is the **pushforward Lie algebra**.

Two representations $\rho_1 : G \to \operatorname{GL}(n, V)$ and $\rho_2 : G \to \operatorname{GL}(n, V)$ of are equal (up to a change of coordinates) if there is an invertible linear transformation $L : \operatorname{M}_{n \times n} \to \operatorname{M}_{n \times n}$ which preserves commutators (i.e., L([X, Y]) = [L(X), L(Y)])

$$\begin{array}{ccc} \mathsf{Ex.:} \ \rho : \mathrm{SO}(2) \to \mathrm{GL}(3,\mathbb{R}) & \mathsf{Ex'.:} \ \rho' : \mathrm{SO}(2) \to \mathrm{GL}(3,\mathbb{R}) \\ \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \xrightarrow{\rho} \begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix} & \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \xrightarrow{\rho'} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix} \\ \stackrel{exp}{\longrightarrow} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \xrightarrow{exp} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} & \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \xrightarrow{d\rho'} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \end{array}$$

The derived representations allow to determine if two representations are the same. **Lemma:** Equal representations iff conjugated pushforward Lie algebra.

Representations of Lie groups define representations of their Lie algebras, called **derived representation**, where the images are matrices and the Lie brackets become commutators

$$\begin{array}{ccc} G & \stackrel{\rho}{\longrightarrow} \operatorname{GL}(V) & \operatorname{Ex.:} & (S^{1}, +) & \stackrel{\rho}{\longrightarrow} \operatorname{SO}(2) & \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix} \xrightarrow{\rho} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \\ \stackrel{\exp\uparrow}{\longrightarrow} & \exp\uparrow & \exp\uparrow & \exp\uparrow & \exp\uparrow \\ \mathfrak{g} & \stackrel{d\rho}{\longrightarrow} \mathfrak{gl}(V) = \operatorname{M}(V) & & & & & & \\ \mathbb{R} & \stackrel{d\rho}{\longrightarrow} \mathfrak{so}(2) & & & & & & \\ \end{array}$$

 $d\rho(\mathfrak{g}) \subset M(V)$ is the **pushforward Lie algebra**.

Two representations $\rho_1 : G \to \operatorname{GL}(n, V)$ and $\rho_2 : G \to \operatorname{GL}(n, V)$ of are equal (up to a change of coordinates) if there is an invertible linear transformation $L : \operatorname{M}_{n \times n} \to \operatorname{M}_{n \times n}$ which preserves commutators (i.e., L([X, Y]) = [L(X), L(Y)])

we may consider $\mathcal{G}^{Lie}(V, \mathfrak{g})$ (resp. $\mathcal{V}^{Lie}(V, \mathfrak{g})$) as the Grasmmannian (resp. Stiefel) varieties of representations of \mathfrak{g} in V up to this equivalence

The derived representations allow to determine if two representations are the same.

Lemma: Equal representations iff conjugated pushforward Lie algebra.

Facts about compact Lie groups

1. Compact Lie groups are fully classified

Group	Definition	Lie algebra definition	Dimension]
O(n)	$O^T = O^{-1}$	$O^T = -O$	$\frac{n(n-1)}{2}$	
$\mathrm{SO}(n)$	$O^T = O^{-1}$	$O^T = -O$	$\frac{n(n-1)}{2}$	+ products
	$\det O = 1$			
$\mathrm{U}(n)$	$U^{\dagger} = U^{-1}$	$U^{\dagger} = -U$	n^2	+ finite extensions
$\mathrm{SU}(n)$	$U^{\dagger} = U^{-1}$	$U^{\dagger} = -U$	$n^2 - 1$	
	$\det U = 1$	$\operatorname{tr} U = 0$		

2. All representations of compact Lie groups are orthogonal under some inner product

 $\begin{array}{l} (\phi,V) \text{ is a rep of } G \iff \text{ there is an inner product } \langle \cdot,\cdot\rangle \text{ such that, for all } x,y \in V\\ & \text{ and } g \in G, \ \langle x,y\rangle = \langle \rho(g)x,\rho(g)y\rangle\\ \iff \text{ there is a representation } (\phi',V) \text{ with } \langle x,y\rangle_{\ell^2} = \langle \phi'(g)x,\phi'(g)y\rangle_{\ell^2}\\ & \text{ and a } A \in \mathsf{GL}(V) \text{ such that } \phi(g) = A\phi'(g)A^{-1}, \forall g \in G\end{array}$

3. Representations of compact Lie groups are completely reducible (there is a basis for V such that $\rho(g) = \text{diag}(\pi_1(g), \dots, \pi_n(g))$)

4. If G is connected, then $\exp: \mathfrak{g} \to G$ is surjective

Our algorithm

The goal: Given a point cloud $\{x_i\}_{i=1}^N$ in \mathbb{R}^n which we believe to within the orbit of a representation $\rho: G \to \operatorname{GL}(n, \mathbb{R})$ of G. We want to decompose ρ as a direct sum of irreducible representations, i.e., there is an orthogonal change of basis $A: \mathbb{R}^n \to \mathbb{R}^n$ such that $\rho = A(\pi_1 \oplus \pi_2 \oplus \cdots \oplus \pi_k)A^{-1}$.

Ex.: The non-trivial real irreducible representations of SO(2) are all of $\pi_n : SO(2) \to GL(2, \mathbb{R})$ and given by

$$\pi_n(\theta) = \begin{pmatrix} \cos(n\theta) & -\sin(n\theta) \\ \sin(n\theta) & \cos(n\theta) \end{pmatrix}$$

Any $\rho : \mathrm{SO}(2) \to \mathbb{R}^{2n}$ has form $\rho(\theta) = \begin{pmatrix} \pi_{i_1}(\theta) & \\ & \pi_{i_2}(\theta) \\ & & \\$

where the non-negative integers $i_1, \ldots, i_{n/2}$ are called the representation **types**.

Ex. 2: The non-trivial real irreducible representations of SO(3) are more complicated, but there are, up to change of basis, one irreducible representation of SO(3) for all odd positive integers

Our algorithm

The challenge: Find this decomposition, together with the change of basis A.

The solution: Work at the Lie algebra level to find a basis $\{T_j\}_{j=1}^{\dim G}$ for $d\rho(\mathfrak{g})$ and decompose each T_j into representation types.

- 1. Lie theory
- 2. Applications of the algorithm
- 3. Description of the algorithm
- 4. Proof of robustness
- 5. Conclusion

Pixel Permutation Transformations

We can treat permutation of $n \times n$ pixeled images as orthogonal matrices in $\mathbb{R}^{n \times n}$

the embedded images $\{x\} \in \mathbb{R}^{n \times n}$ lie in a orbit of a $O(n^2)$ representation

But special set of transformations may be within the **orbit of representations of "smaller" Lie** groups

Lemma: If a set of $n \times n$ images $\{x_i\}_{i=0}^N$ is generated by applications of an Abelian group of rank d to x_0 , then their embeddings $\{x_i^{\uparrow}\}_{i=0}^N$ lie in an orbit of a $SO(2)^d \approx T^d$ representation in $\mathbb{R}^{n \times n}$. Moreover, they are still in orbit of a $SO(2)^d \approx T^d$ representation after (smart) applications of PCA.

Pixel Permutation Transformations

Application 1: orbit completion

_	PCA dimension	Upscale of initial image	Hausdorff distance	Upscale of orbit generated
10	4		0.039	A
	6	*	0.029	¥.
	8	×	0.065	×
	10	*	0.084	¥

Harmonic analysis

Application 2: harmonic analysis

Theorem: Suppose \mathcal{O} is an orbit of a representation of a Lie group G in \mathbb{R}^n . Then there is a known enumerable set of functions $\{\tilde{f}_i: \mathcal{O} \to \mathbb{C}\}_{i=0}^{\infty}$ such that, for any continuous $f: \mathcal{O} \to \mathbb{C}$, there are $\{a_i\}_{i=0}^{\infty} \in \mathbb{C}$ such that $f = \sum_{i=0}^{\infty} a_i \tilde{f}_i$.

Ex.: for $G = (S^1, +)$, this reduces to the ordinary Fourier decomposition

Neural Network

24.91

25.33

- 1. Lie theory
- 2. Applications of the algorithm
- 3. Description of the algorithm
- 4. Proof of robustness
- 5. Conclusion

Input: A point cloud $X = \{x_1 \dots, x_N\} \subset \mathbb{R}^n$ and a compact Lie group G.

Output: A representation $\widehat{\phi}$ of G in \mathbb{R}^n , and an orbit $\widehat{\mathcal{O}}$ close to X.

Example: Let $X \subset \mathbb{R}^4$ be a 300-sample of

$$\mathcal{O} = \{ (\cos t, 2\sin t, \cos 4t, \sin 4t) \mid t \in [0, 2\pi) \}.$$

It is an orbit of SO(2) for the representation $\phi \colon SO(2) \to M_4(\mathbb{R})$ defined as

$$t \mapsto \operatorname{diag}\left(\begin{pmatrix} \cos t & -(1/2)\sin t \\ 2\sin t & \cos t \end{pmatrix}, \begin{pmatrix} \cos 4t & -\sin 4t \\ \sin 4t & \cos 4t \end{pmatrix} \right).$$

We expect the algorithm to output a faithful approximation of ϕ and \mathcal{O} .

Input: A point cloud $X = \{x_1 \dots, x_N\} \subset \mathbb{R}^n$ and a compact Lie group G.

Output: A representation $\widehat{\phi}$ of G in \mathbb{R}^n , and an orbit $\widehat{\mathcal{O}}$ close to X.

Example: Let $X \subset \mathbb{R}^4$ be a 300-sample of (with potentially noise and anomalous points)

$$\mathcal{O} = \{ (\cos t, 2\sin t, \cos 4t, \sin 4t) \mid t \in [0, 2\pi) \}.$$

It is an orbit of SO(2) for the representation $\phi \colon SO(2) \to M_4(\mathbb{R})$ defined as

$$t \mapsto \operatorname{diag}\left(\begin{pmatrix} \cos t & -(1/2)\sin t \\ 2\sin t & \cos t \end{pmatrix}, \begin{pmatrix} \cos 4t & -\sin 4t \\ \sin 4t & \cos 4t \end{pmatrix} \right).$$

We expect the algorithm to output a faithful approximation of ϕ and \mathcal{O} .

Input: A point cloud $X = \{x_1 \dots, x_N\} \subset \mathbb{R}^n$ and a compact Lie group G.

Output: A representation $\widehat{\phi}$ of G in \mathbb{R}^n , and an orbit $\widehat{\mathcal{O}}$ close to X.

Main idea: Estimate first the pushforward Lie algebra $\mathfrak{h} = d\phi(\mathfrak{g})$, and deduce \mathcal{O} through

$$\mathcal{O} = \phi(G) \cdot x = \exp(\mathfrak{h}) \cdot x = \left\{ \exp(A)x \mid A \in \mathfrak{h} \right\},\$$

where x is any element of \mathcal{O} . The algebra \mathfrak{h} is found as a Lie subalgebra of $\mathfrak{sym}(\mathcal{O})$.

Example: With $\mathcal{O} = \left\{ (\cos t, \sin t, \cos 4t, \sin 4t) \mid t \in [0, 2\pi) \right\},$ $\operatorname{Sym}(\mathcal{O}) = \left\{ \operatorname{diag}\left(\begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}, \begin{pmatrix} \cos 4t & -\sin 4t \\ \sin 4t & \cos 4t \end{pmatrix} \right) \mid t \in [0, 2\pi) \right\}.$ $\mathfrak{sym}(\mathcal{O}) = \left\{ \operatorname{diag}\left(\begin{pmatrix} 0 & -t \\ t & 0 \end{pmatrix}, \begin{pmatrix} 0 & -4t \\ 4t & 0 \end{pmatrix} \right) \mid t \in \mathbb{R} \right\}.$

Input: A point cloud $X = \{x_1 \dots, x_N\} \subset \mathbb{R}^n$ and a compact Lie group G.

Output: A representation $\widehat{\phi}$ of G in \mathbb{R}^n , and an orbit $\widehat{\mathcal{O}}$ close to X.

Main idea: Estimate first the pushforward Lie algebra $\mathfrak{h} = d\phi(\mathfrak{g})$, and deduce \mathcal{O} through

$$\mathcal{O} = \phi(G) \cdot x = \exp(\mathfrak{h}) \cdot x = \{ \exp(A)x \mid A \in \mathfrak{h} \},\$$

where x is any element of \mathcal{O} . The algebra \mathfrak{h} is found as a Lie subalgebra of $\mathfrak{sym}(\mathcal{O})$.

Step 1: Orthonormalization Apply dimension reduction and orthonormalization.

Step 2: Lie-PCA Diagonalize the Lie-PCA operator $\Lambda: M_n(\mathbb{R}) \to M_n(\mathbb{R})$.

Step 3: Closest Lie algebra Estimate $\hat{\mathfrak{h}}$ through an optimization program over O(n).

Step 4: Generate the orbit Deduce $\widehat{\mathcal{O}}_x = \exp(\widehat{\mathfrak{h}})$ and check that it is close to X.

Step 1: Orthonormalization

We wish to normalize the orbit \mathcal{O} so as to make ϕ an orthogonal representation,

- i.e., such that ϕ takes values in O(n),
- i.e., such that \mathcal{O} lies in a sphere of a certain radius.

Fact: there exists a positive-definite matrix M such that the conjugated representation $M\phi M^{-1}$ is orthogonal. Orbits are obtained by left translation by M.

We find M as the square root of the Moore-Penrose pseudo-inverse of covariance matrix:

$$M = \sqrt{\Sigma[X]^+}$$
 where $\Sigma[X] = \frac{1}{N} \sum_{i=1}^N x_i x_i^\top$.

Example: With
$$M = \frac{1}{\sqrt{2}} \operatorname{diag}(1, 1/2, 1, 1),$$

 $\phi: t \mapsto \operatorname{diag}\left(\begin{pmatrix} \cos t & -(1/2)\sin t \\ 2\sin t & \cos t \end{pmatrix}, \begin{pmatrix} \cos 4t & -\sin 4t \\ \sin 4t & \cos 4t \end{pmatrix}\right)$
 $M\phi M^{-1}: t \mapsto \operatorname{diag}\left(\begin{pmatrix} \cos t & \sin t \\ \sin t & \cos t \end{pmatrix}, \begin{pmatrix} \cos 4t & -\sin 4t \\ \sin 4t & \cos 4t \end{pmatrix}\right)$
 $\mathcal{O} = \{(\cos t, 2\sin t, \cos 4t, \sin 4t) \mid t \in [0, 2\pi)\}.$
 $M\mathcal{O} = \{\frac{1}{\sqrt{2}}(\cos t, \sin t, \cos 4t, \sin 4t) \mid t \in [0, 2\pi)\}.$

Step 1: Orthonormalization

Dimension reduction: In addition, we apply PCA to X.

Let ϵ be parameter, and $\Pi_{\Sigma[X]}^{>\epsilon}$ be the projection matrix on the subspace of \mathbb{R}^n spanned by the eigenvectors of $\Sigma[X]$ of eigenvalue greater than ϵ . We set $X \leftarrow \Pi_{\Sigma[X]}^{>\epsilon} X$.

This has the effect of:

- reducing the computational cost of the next steps,
- avoiding numerical errors, when computing the pseudo-inverse of $\boldsymbol{\Sigma}[X]$,
- ensuring that we will estimate non-trivial representations.

Intrinsic and extrinsic symmetries: Given a Riemannian manifold \mathcal{M} isometrically embedded in \mathbb{R}^n , define

- $\operatorname{Isom}(\mathcal{M})$: the set of diffeomorphisms $\mathcal{M} \to \mathcal{M}$ that preserves the metric,
- $\operatorname{Sym}(\mathcal{M}) = \{ P \in \operatorname{GL}_n(\mathbb{R}) \mid P\mathcal{M} = \mathcal{M} \}.$

By restricting the action of the matrices P to \mathcal{M} , we obtain a group homomorphism

 $\operatorname{Sym}(\mathcal{M}) \to \operatorname{Isom}(\mathcal{M}).$

It may not be injective, since certain matrices P may act trivially on \mathcal{M} . This is avoided by projecting \mathcal{M} into the subspace is spans.

Step 2: Lie-PCA

We wish to estimate $\mathfrak{sym}(\mathcal{O}) = \{P \in \mathfrak{gl}_n(\mathbb{R}) \mid \exp(P) \in \operatorname{Sym}(\mathcal{O})\}.$

A solution has been proposed in [Cahill, Mixon, Parshall, Lie PCA: Density estimation for symmetric manifolds, Applied and Computational Harmonic Analysis, 2023].

Lie-PCA operator: $\Lambda \colon M_n(\mathbb{R}) \to M_n(\mathbb{R})$ is defined as

$$\Lambda(A) = \sum_{1 \le i \le N} \widehat{\Pi} \big[\mathcal{N}_{x_i} X \big] \cdot A \cdot \Pi \big[\langle x_i \rangle \big]$$

where

- $\widehat{\Pi}[N_{x_i}X]$ estimation of projection matrices on the normal spaces $N_{x_i}O$,
 - $\Pi[\langle x_i \rangle]$'s are the projection matrices on the lines $\langle x_i \rangle$.

In practice, we find $\widehat{\Pi}[\mathbf{N}_{x_i}X]$ via local PCA.

Facts: (1) Λ is symmetric. (2) The kernel of Λ is approximately $\mathfrak{sym}(\mathcal{O})$. We can find $\mathfrak{sym}(\mathcal{O})$ as the subspace spanned by the bottom eigenvectors of λ .

Example: The eigenvalues of Λ on $\mathcal{O} = \{(\cos t, \sin t, \cos 4t, \sin 4t) \mid t \in [0, 2\pi)\}$ are 0.001, 0.102, 0.109, 0.112, 0.135, 0.145, 0.156, 0.212, 0.212, 0.233, 0.236, 0.247, 0.249, 0.259, 0.296, 0.296.

Step 2: Lie-PCA

We wish to estimate $\mathfrak{sym}(\mathcal{O}) = \{P \in \mathfrak{gl}_n(\mathbb{R}) \mid \exp(P) \in \operatorname{Sym}(\mathcal{O})\}.$

A solution has been proposed in [Cahill, Mixon, Parshall, Lie PCA: Density estimation for symmetric manifolds, Applied and Computational Harmonic Analysis, 2023].

Lie-PCA operator: $\Lambda \colon M_n(\mathbb{R}) \to M_n(\mathbb{R})$ is defined as

$$\Lambda(A) = \sum_{1 \le i \le N} \widehat{\Pi} \big[\mathcal{N}_{x_i} X \big] \cdot A \cdot \Pi \big[\langle x_i \rangle \big]$$

where

• $\widehat{\Pi}[N_{x_i}X]$ estimation of projection matrices on the normal spaces $N_{x_i}O_i$

• $\Pi[\langle x_i \rangle]$'s are the projection matrices on the lines $\langle x_i \rangle$.

In practice, we find $\widehat{\Pi}[N_{x_i}X]$ via local PCA.

Step 2: Lie-PCA

Derivation of Lie-PCA: Based on the fact that

$$\mathfrak{sym}(\mathcal{O}) = \left\{ A \in \mathcal{M}_n(\mathbb{R}) \mid \forall x \in \mathcal{O}, Ax \in \mathcal{T}_x \mathcal{O} \right\}$$

where $T_x \mathcal{O}$ denotes the tangent space of \mathcal{O} at x. In other words,

$$\mathfrak{sym}(\mathcal{O}) = \bigcap_{x \in \mathcal{O}} S_x \mathcal{O} \quad \text{where} \quad S_x \mathcal{O} = \{ A \in \mathcal{M}_n(\mathbb{R}) \mid Ax \in \mathcal{T}_x \mathcal{O} \},\$$

Using only the point cloud $X = \{x_1, \ldots, x_N\}$, we consider

$$\bigcap_{i=1}^{N} S_{x_i} \mathcal{O} = \ker \bigg(\sum_{i=1}^{N} \Pi \big[(S_{x_i} \mathcal{O})^{\perp} \big] \bigg),$$

Besides, the authors show that

$$\Pi \big[(S_{x_i} \mathcal{O})^{\perp} \big] (A) = \Pi \big[\mathrm{N}_{x_i} \mathcal{O} \big] \cdot A \cdot \Pi \big[\langle x_i \rangle \big].$$

One naturally puts

$$\Lambda(A) = \sum_{i=1}^{N} \widehat{\Pi} \left[\mathbf{N}_{x_i} X \right] \cdot A \cdot \Pi \left[\langle x_i \rangle \right]$$

where $\widehat{\Pi}[N_{x_i}X]$ is an estimation of $\Pi[N_{x_i}\mathcal{O}]$ computed from the observation X.

Step 3: Closest Lie algebra

We will suppose that $d = \dim(\mathfrak{sym}(\mathcal{O}))$ is known. General case studied in our paper.

In the original Lie-PCA, the authors propose to estimate $\mathfrak{sym}(\mathcal{O})$ as $\langle A_1, \ldots, A_d \rangle$, the linear subspace of $M_n(\mathbb{R})$ spanned by the d bottom eigenvectors of Λ . But:

(1) $\langle A_1, \ldots, A_d \rangle$ may not be a Lie algebra pushforward of \mathfrak{g} :

$$A_{1} = \begin{pmatrix} 0 & -2.3 & 0 & 0 \\ 2.3 & 0 & 0 & 0 \\ 0 & 0 & 0 & -5.5 \\ 0 & 0 & 5.5 & 0 \end{pmatrix} \qquad \begin{array}{c} ? \\ \approx \end{array} \begin{pmatrix} 0 & -2 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & -5 \\ 0 & 0 & 5 & 0 \end{pmatrix} \qquad \text{or} \quad \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3 \\ 0 & 0 & 3 & 0 \end{pmatrix}$$

(2) $\langle A_1, \ldots, A_d \rangle$ may not be close under Lie bracket [A, B] = AB - BA.

Solution: Project $\langle A_1, \ldots, A_d \rangle$ to the closest Lie algebra pushforward of \mathfrak{g}

 $\arg\min\left\|\Pi\left[\langle A_i\rangle_{i=1}^d\right] - \Pi\left[\widehat{\mathfrak{h}}\right]\right\| \quad \text{s.t.} \quad \widehat{\mathfrak{h}} \in \mathcal{G}(G,\mathfrak{so}(n)),$

where • $\Pi[\langle A_i \rangle_{i=1}^d]$ and $\Pi[\widehat{\mathfrak{h}}]$ are projection matrices, seen as operators on $M_n(\mathbb{R})$,

- $\|\Pi[\langle A_i \rangle_{i=1}^d] \Pi[\widehat{\mathfrak{h}}]\|$ is the distance on the Grassmannian of *d*-planes in $M_n(\mathbb{R})$,
- $\mathcal{G}(G, \mathfrak{so}(n))$, the set of Lie subalgebras of $\mathfrak{so}(n)$ coming from an almost-faithful representation of G in \mathbb{R}^n

Step 3: Closest Lie algebra

Reformulation: The minimization program

 $\arg\min \left\| \Pi\left[\langle A_i \rangle_{i=1}^d \right] - \Pi\left[\widehat{\mathfrak{h}}\right] \right\| \quad \text{s.t.} \quad \widehat{\mathfrak{h}} \in \mathcal{G}(G, \mathfrak{so}(n)),$

is equivalent to

$$\arg\min\left\|\Pi\left[\langle A_i\rangle_{i=1}^d\right] - \Pi\left[\langle O\mathrm{diag}(B_i^k)_{k=1}^p O^\top\rangle_{i=1}^d\right]\right\| \quad \text{s.t.} \quad \begin{cases} (B^1,\ldots,B^p) \in \mathfrak{orb}(G,n),\\ O \in \mathcal{O}(n). \end{cases}$$

where $\mathfrak{orb}(G, n)$ is a choice of representatives in the moduli space of orbit-equivalence of almost-faithful representation of G in \mathbb{R}^n .

This program naturally splits into $|\mathfrak{orb}(G, n)|$ minimization problems over O(n). In practice, we perform the minimizations via by gradient descent (package Pymanopt).

Example: We still consider $\mathcal{O} = \{(\cos t, \sin t, \cos 4t, \sin 4t) \mid t \in [0, 2\pi)\}$. The representations of SO(2) on \mathbb{R}^4 take the form

$$\phi_u \oplus \phi_v(t) = \operatorname{diag}\left(\begin{pmatrix} \cos ut & -\sin ut \\ \sin ut & \cos ut \end{pmatrix}, \begin{pmatrix} \cos vt & -\sin vt \\ \sin vt & \cos vt \end{pmatrix} \right)$$

Result of minimization:

Weights	(0,1)	(1, 2)	(1, 3)	(1, 4)	(2,3)	(3,4)
Costs	0.004	0.002	0.002	$4.29 imes10^{-5}$	0.006	0.008

Step 3: Closest Lie algebra

Reformulation: The minimization program

 $\arg\min \left\| \Pi\left[\langle A_i \rangle_{i=1}^d \right] - \Pi\left[\widehat{\mathfrak{h}}\right] \right\| \quad \text{s.t.} \quad \widehat{\mathfrak{h}} \in \mathcal{G}(G, \mathfrak{so}(n)),$

is equivalent to

$$\arg\min\left\|\Pi\left[\langle A_i\rangle_{i=1}^d\right] - \Pi\left[\langle O\mathrm{diag}(B_i^k)_{k=1}^p O^\top\rangle_{i=1}^d\right]\right\| \quad \text{s.t.} \quad \begin{cases} (B^1,\ldots,B^p) \in \mathfrak{orb}(G,n),\\ O \in \mathcal{O}(n). \end{cases}$$

where $\mathfrak{orb}(G, n)$ is a choice of representatives in the moduli space of orbit-equivalence of almost-faithful representation of G in \mathbb{R}^n .

This program naturally splits into $|\mathfrak{orb}(G,n)|$ minimization problems over O(n). In practice, we perform the minimizations via by gradient descent (package Pymanopt).

Example: We consider a sample X of an orbit $\mathcal{O} \subset \mathbb{R}^6$ of the 2-torus T^2 . Its pushforward Lie algebras are in correspondence with 2-dimensional primitive integral lattices of \mathbb{Z}^3 .

Туре	$\left(\begin{smallmatrix} 0 & 1 & 1 \\ 2 & -2 & 1 \end{smallmatrix}\right)$	$\left(\begin{array}{rrr}1&1&2\\-2&2&-1\end{array}\right)$	$\left(\begin{smallmatrix} 0 & 1 & 2 \\ 2 & -2 & -1 \end{smallmatrix}\right)$	$\left(\begin{array}{cc} 0 & 1 & 1 \\ 1 & -2 & 0 \end{array}\right)$	$\left(\begin{smallmatrix} 0 & 1 & 1 \\ 1 & -2 & -1 \end{smallmatrix}\right)$	$\left(\begin{array}{cc} 0 & 1 & 2 \\ 2 & -2 & 1 \end{array}\right)$
Costs	0.036	0.136	0.198	0.233	0.244	0.312
Туре	$\left(\begin{smallmatrix} 0 & 1 & 2 \\ 1 & -2 & -2 \end{smallmatrix}\right)$	$\left(\begin{smallmatrix} 0 & 1 & 2 \\ 1 & -2 & -1 \end{smallmatrix}\right)$	$\left(\begin{array}{rrr}1&2&2\\-2&-2&1\end{array}\right)$	$\left(\begin{array}{rrr}1&1&1\\-2&-1&2\end{array}\right)$	$\left(\begin{smallmatrix} 0 & 1 & 2 \\ 1 & -2 & 0 \end{smallmatrix}\right)$	$\left(\begin{array}{cc} 0 & 1 & 1 \\ 1 & -2 & 1 \end{array}\right)$
Costs	0.331	0.348	0.388	0.447	0.457	0.472

Step 4: Generate the orbit

We have calculated a representation $\widehat{\phi} \colon G \to \mathrm{SO}(n)$ whose pushforward Lie algebra $\widehat{\mathfrak{h}}$ is closest to that of X.

We now exponentiate it: let $x \in X$ arbitrary and

$$\widehat{\mathcal{O}}_x = \widehat{\phi}(G) \cdot x = \big\{ \exp(A)x \mid A \in \widehat{h} \big\}.$$

In practice, it is enough to compute

$$\widehat{\mathcal{O}}_x = \big\{ \exp(A)x \mid A \in \mathfrak{h}, \|A\| \le \delta \times \operatorname{diam}(G) \big\}$$

where diam(G) is the diameter of G (endowed with a bi-invariant Riemannian structure) and δ is a Lispchitz constant for $\hat{\phi}$.

Hausdorff distance: In order to quantify the quality of our estimation, we compute the one-sided Hausdorff distance $d_H(X|\widehat{O}_x)$.

Wasserstein distance: Hausdorff distance is not suited when X has anomalous points. In this case, we consider

$$\mu_{\widehat{\mathcal{O}}} = \frac{1}{N} \sum_{i=1}^{N} \mu_{\widehat{\mathcal{O}}_{x_i}} \quad \text{ with } \mu_{\widehat{\mathcal{O}}_{x_i}} \text{ uniform measure on } \widehat{\mathcal{O}}_{x_i},$$

and compute the Wasserstein distance $W_2(\mu_X, \mu_{\widehat{O}})$.

Toy examples

Rep of SO(2) with noise: Let X be a 300-sample of

 $\mathcal{O} = \left\{ (\cos t, 2\sin t, \cos 4t, \sin 4t) \mid t \in [0, 2\pi) \right\}$

to which we add an additive Gaussian noise ($\sigma = 0.03$) and 30 points uniformly in $[-1, 1]^4$.

The algorithm, with G = SO(2), retrieves successfully the representation $\phi_1 \oplus \phi_4$.

However, with an arbitrary $x \in X$, we obtain the Hausdorff distance $d_H(X|\widehat{\mathcal{O}}_x) \approx 1.128$.

On the other hand, the Wasserstein distance is $W_2(\mu_X, \mu_{\widehat{O}}) \approx 0.392$.

To visualize $\mu_{\widehat{\mathcal{O}}}$, we consider a Gaussian kernel density estimator $f \colon \mathbb{R}^4 \to [0, +\infty)$ (bandwidth 0.1) and represent the sublevel set $f^{-1}([0.5, +\infty))$.

Toy examples

Rep of T^2 in \mathbb{R}^6 : Let X be a uniform 750-sample of an orbit of the representation $\phi_{(1,1)} \oplus \phi_{(1,2)} \oplus \phi_{(2,1)}$ of the torus T^2 in \mathbb{R}^6 .

We apply the algorithm with $G = T^2$ on X, and restrict the representations to those with weights at most 2.

The algorithm's output is $\begin{pmatrix} 0 & 1 & 1 \\ 2 & -2 & 1 \end{pmatrix}$, that is, the representation $\phi_{(0,2)} \oplus \phi_{(1,-2)} \oplus \phi_{(1,1)}$. Moreover, $d_H(X|\widehat{\mathcal{O}}_x) \approx 0.071$.

Туре	$\left(\begin{array}{cc} 0 & 1 & 1 \\ 2 & -2 & 1 \end{array}\right)$	$\left(\begin{array}{rrr}1&1&2\\-2&2&-1\end{array}\right)$	$\left(\begin{array}{cc} 0 & 1 & 2 \\ 2 & -2 & -1 \end{array}\right)$	$\left(\begin{smallmatrix} 0 & 1 & 1 \\ 1 & -2 & 0 \end{smallmatrix}\right)$	$\left(\begin{array}{rrr} 0 & 1 & 1 \\ 1 & -2 & -1 \end{array}\right)$	$\left(\begin{array}{cc} 0 & 1 & 2 \\ 2 & -2 & 1 \end{array}\right)$
Costs	0.036	0.136	0.198	0.233	0.244	0.312
Туре	$\left(\begin{array}{cc} 0 & 1 & 2 \\ 1 & -2 & -2 \end{array}\right)$	$\left(\begin{smallmatrix} 0 & 1 & 2 \\ 1 & -2 & -1 \end{smallmatrix}\right)$	$\left(\begin{array}{rrr}1&2&2\\-2&-2&1\end{array}\right)$	$\left(\begin{array}{rrr}1&1&1\\-2&-1&2\end{array}\right)$	$\left(\begin{smallmatrix} 0 & 1 & 2 \\ 1 & -2 & 0 \end{smallmatrix}\right)$	$\left(\begin{array}{cc} 0 & 1 & 1 \\ 1 & -2 & 1 \end{array}\right)$
Costs	0.331	0.348	0.388	0.447	0.457	0.472

Eigenvalues of Lie-PCA operator

Toy examples

The irreps of SU(2) and SO(3) in \mathbb{R}^n are parametrized by the partitions of n.

Orthogonal group in \mathbb{R}^9 : Let X be a 3000-sample of the 3×3 special orthogonal matrices embedded in \mathbb{R}^9 .

We expect to estimate a nontrivial representation of SO(3), since it acts transitively on itself. The algorithm yields:

Representation	(3,5)	(3,3,3)	(4,5)	(8)	(5)	(7)
Cost	$2 imes 10^{-5}$	$4 imes 10^{-5}$	0.001	0.001	0.03	0.004
Representation	(9)	(3,3)	(3,4)	(4, 4)	(3)	(4)
Cost	0.004	0.006	0.007	0.009	0.011	0.013

The optimum is given by the partition (3,5). However $d_H(X|\widehat{\mathcal{O}}_x) \approx 2.658$. In comparison, the distance from the orbit to X is small: $d_H(\widehat{\mathcal{O}}_x|X) \approx 0.543$. This indicates that the representation is not transitive on X.

Next, consider the representation (3,3,3). We obtain $d_H(X|\widehat{\mathcal{O}}_x) \approx 0.061$.

- 1. Lie theory
- 2. Applications of the algorithm
- 3. Description of the algorithm
- 4. Proof of robustness
- 5. Conclusion

Stability

Input: $X = \{x_1 \dots, x_N\} \subset \mathbb{R}^n$ and G compact Lie group

- **Step 1:** Orthonormalization via $X \leftarrow \sqrt{\Sigma[X]^+} \cdot \Pi_{\Sigma[X]}^{>\epsilon} \cdot X$. with $\Sigma[X]$ covariance matrix, and $\Pi_{\Sigma[X]}^{>\epsilon}$ projection on eigenvectors $> \epsilon$.
- **Step 2:** Diagonalize the operator $\Lambda \colon A \mapsto \sum_{i=1}^{N} \widehat{\Pi} [N_{x_i} X] \cdot A \cdot \Pi [\langle x_i \rangle]$ where $A \in M_n(\mathbb{R})$, and $\widehat{\Pi} [N_{x_i} X]$ estimation of projection on normal space of X.
- **Step 3:** Solve $\arg \min_{\widehat{h}} \|\Pi[\langle A_i \rangle_{i=1}^d] \Pi[\widehat{\mathfrak{h}}]\|$ with $(A_i)_{i=1}^d$ bottom eigenvectors of Λ where $\widehat{h} \in \mathcal{G}(\mathfrak{g}, \mathfrak{so}(n))$ Grassmann variety of Lie subalgebras pushforward of G.
- **Step 4:** Output $\widehat{\mathcal{O}}_x = \{ \exp(A)x \mid A \in \widehat{h} \}$ where $x \in X$ is an arbitrary point.
- **Goal:** Show that $\widehat{\mathcal{O}}_x$ is stable with respect to X

Stability

Input: $X = \{x_1 \dots, x_N\} \subset \mathbb{R}^n \text{ and } G \text{ compact Lie group}$ $\mu \text{ measure on } \mathbb{R}^n$. E.g., μ_X empirical measure, μ_O uniform (pushforward of Haar measure).

Step 1: Orthonormalization via $X \leftarrow \sqrt{\Sigma[X]^+} \cdot \Pi_{\Sigma[X]}^{>\epsilon} \cdot X$. $\mu \leftarrow \sqrt{\Sigma[\mu]^+} \cdot \Pi_{\Sigma[\mu]}^{>\epsilon} \cdot \mu$.

Step 2: Diagonalize the operator $\Lambda \colon A \mapsto \sum_{i=1}^{N} \widehat{\Pi} [\operatorname{N}_{x_i} X] \cdot A \cdot \Pi [\langle x_i \rangle]$ $\Lambda[\mu] \colon A \mapsto \int_{i=1}^{N} \widehat{\Pi} [\operatorname{N}_{x_i} X] \cdot A \cdot \Pi [\langle x_i \rangle] d\mu$

Step 3: Solve $\arg \min_{\widehat{h}} \left\| \Pi[\langle A_i \rangle_{i=1}^d] - \Pi[\widehat{\mathfrak{h}}] \right\|$ with $(A_i)_{i=1}^d$ bottom eigenvectors of Λ $\arg \min_{\widehat{h}} \left\| \Pi[\langle A_i \rangle_{i=1}^d] - \Pi[\widehat{\mathfrak{h}}] \right\|$ with $(A_i)_{i=1}^d$ bottom eigenvectors of $\Lambda[\mu]$

$$\begin{array}{ll} \textbf{Step 4:} & \text{Output } \widehat{\mathcal{O}}_x = \big\{ \exp(A)x \mid A \in \widehat{h} \big\} \\ \\ \mu_{\widehat{\mathcal{O}}_x} = \exp(\widehat{\mathfrak{h}}) \cdot \mu \end{array}$$

Goal: Show that $\widehat{\mathcal{O}}_x$ is stable with respect to XShow that $W_2(\mu_{\widehat{\mathcal{O}}_x}, \nu_{\widehat{\mathcal{O}}_y}) \quad \leq W_2(\mu, \nu)$

Stability

Why working with Wasserstein and not Hausdorff?

- Allows noise and anomalous points
- Everything translates nicely in the measure formalism
- PCA is not stable is Hausdorff

We shall aim for an explicit bound $A \leq B$. This is different from other statistical formalisms. In particular, no law of large numbers.

Robustness

Theorem: Let G be a compact Lie group of dimension d, \mathcal{O} an orbit of an almost-faithful representation of it in \mathbb{R}^n , potentially non-orthogonal, and l its dimension. Let $\mu_{\mathcal{O}}$ be the uniform measure on \mathcal{O} , and $\mu_{\widetilde{\mathcal{O}}}$ that on the orthonormalized orbit.

Besides, let $X \subset \mathbb{R}^n$ be a finite point cloud and μ_X its empirical measure. Let $\mu_{\widehat{\mathcal{O}}}$ be the output of the algorithm.

Under technical assumptions, it holds that

$$W_2(\mu_{\widehat{\mathcal{O}}},\mu_{\widetilde{\mathcal{O}}}) \leq \frac{1}{\sqrt{2}} \frac{W_2(\mu_X,\mu_{\mathcal{O}})}{\sigma_{\min}} + 3\sqrt{dn} \left(\frac{\rho}{\lambda}\right)^{1/2} \left(r + 4\left(\frac{\widetilde{\omega}}{r^{l+1}}\right)^{1/2}\right)^{1/2}$$

where

- σ_{\max}^2 , σ_{\min}^2 the top and bottom nonzero eigenvalues of the covariance matrix $\Sigma[\mu_{\mathcal{O}}]$ • $\rho = \left(16l(l+2)6^l\right) \frac{\max(\operatorname{vol}(\tilde{\mathcal{O}}), \operatorname{vol}(\tilde{\mathcal{O}})^{-1})}{\min(1, \operatorname{reach}(\tilde{\mathcal{O}}))}$ • $\widetilde{\omega} = 4(n+1)^{3/2} \left(\frac{\sigma_{\max}^3}{\sigma_{\min}^3}\right) \left(\omega(v+\omega)\right)^{1/2}$ with $\omega = \frac{W_2(\mu_{\mathcal{O}}, \mu_X)}{\sigma_{\min}}$ and $v = \left(\frac{\mathbb{V}[\|\mu_{\mathcal{O}}\|]}{\sigma_{\min}^2}\right)^{1/2}$
- r is the radius of local PCA (estimation of tangent spaces)

Robustness

Theorem: Let G be a compact Lie group of dimension d, \mathcal{O} an orbit of an almost-faithful representation of it in \mathbb{R}^n , potentially non-orthogonal, and l its dimension. Let $\mu_{\mathcal{O}}$ be the uniform measure on \mathcal{O} , and $\mu_{\widetilde{\mathcal{O}}}$ that on the orthonormalized orbit.

Besides, let $X \subset \mathbb{R}^n$ be a finite point cloud and μ_X its empirical measure. Let $\mu_{\widehat{\mathcal{O}}}$ be the output of the algorithm.

Under technical assumptions, it holds that

$$\begin{split} W_{2}(\mu_{\widehat{\mathcal{O}}},\mu_{\widetilde{\mathcal{O}}}) &\leq \frac{1}{\sqrt{2}} \frac{W_{2}(\mu_{X},\mu_{\mathcal{O}})}{\sigma_{\min}} + 3\sqrt{dn} \left(\frac{\rho}{\lambda}\right)^{1/2} \left(r + 4\left(\frac{\widetilde{\omega}}{r^{l+1}}\right)^{1/2}\right)^{1/2} \\ &\lesssim r^{1/2} + \left(\frac{W_{2}(\mu_{\mathcal{O}},\mu_{X})^{1/2}}{r^{l+1}}\right)^{1/4} & \text{bias-variance trade-off when estimating tangent spaces} \end{split}$$

where

- σ_{\max}^2 , σ_{\min}^2 the top and bottom nonzero eigenvalues of the covariance matrix $\Sigma[\mu_{\mathcal{O}}]$
- $\rho = \left(16l(l+2)6^l\right) \frac{\max(\operatorname{vol}(\tilde{\mathcal{O}}), \operatorname{vol}(\tilde{\mathcal{O}})^{-1})}{\min(1, \operatorname{reach}(\tilde{\mathcal{O}}))}$ • $\widetilde{\omega} = 4(n+1)^{3/2} \left(\frac{\sigma_{\max}^3}{\sigma_{\min}^3}\right) \left(\omega(\upsilon+\omega)\right)^{1/2}$ with $\omega = \frac{W_2(\mu_{\mathcal{O}}, \mu_X)}{\sigma_{\min}}$ and $\upsilon = \left(\frac{\mathbb{V}[\|\mu_{\mathcal{O}}\|]}{\sigma_{\min}^2}\right)^{1/2}$
- r is the radius of local PCA (estimation of tangent spaces)

Robustness

Technical assumptions: Define the quantities

 $\gamma = \left(4(2d+1)\sqrt{2}\right)^{-1} \cdot \lambda \cdot \Gamma(G, n, \omega_{\max}) \quad \text{(rigidity constant of Lie subalgebras)}$

Suppose that ω is small enough, so as to satisfy

$$\omega < \left(\left(v^2 + \frac{1}{2} \right)^{1/2} - v \right) \middle/ \left(3(n+1) \frac{\sigma_{\max}^2}{\sigma_{\min}^2} \right), \qquad \widetilde{\omega} \le \min\left\{ \left(\frac{1}{6\rho} \right)^{3(l+1)}, \frac{\gamma^{l+3}}{16}, \left(\frac{\gamma}{(6\rho)^2} \right)^{l+1} \right\}.$$

Choose two parameters ϵ and r in the following nonempty sets:

$$\epsilon \in \left((2\upsilon + \omega)\omega\sigma_{\min}^2, \ \frac{1}{2}\sigma_{\min}^2 \right], \qquad r \in \left[(6\rho)^2 \cdot \widetilde{\omega}^{1/(l+1)}, \ (6\rho)^{-1} \right] \cap \left[(4/\gamma)^{2/(l+1)} \cdot \widetilde{\omega}^{1/(l+1)}, \ \gamma \right]$$

Moreover, we suppose that

- the minimization problems are computed exactly,
- $\mathfrak{sym}(\mathcal{O})$ is spanned by matrices whose spectra come from primitive integral vectors of coordinates at most ω_{\max} ,
- $G = \operatorname{Sym}(\mathcal{O}).$

Orthonormalization

Ideal covariance matrix: Suppose that \mathcal{O} is an orbit of the representation $\phi: G \to M_n(\mathbb{R})$, and $\mu_{\mathcal{O}}$ the uniform measure on it. With $x_0 \in \mathcal{O}$ an arbitrary point, the covariance matrix can be written

$$\Sigma[\mu_{\mathcal{O}}] = \int \left(\phi(g)x_0\right) \cdot \left(\phi(g)x_0\right)^{\top} \mathrm{d}\mu_G(g).$$

Now, let $\mathbb{R}^n = \bigoplus_{i=1}^m V_i$ be the decomposition of ϕ into irreps, and denote as $(\prod [V_i])_{i=1}^m$ the projection matrices on these subspaces. We can decompose

$$\Sigma[\mu_{\mathcal{O}}] = \sum_{i=1}^{m} C_i \quad \text{where} \quad C_i = \int \phi_i(g) \bigg(\Pi[V_i](x_0) \cdot \Pi[V_i](x_0)^\top \bigg) \phi_i(g)^\top \mathrm{d}\mu_G(g)$$

If ϕ is orthogonal, then by Schur's lemma, the C_i are homotheties:

$$\Sigma[\mu_{\mathcal{O}}] = \sum_{i=1}^{m} \sigma_i^2 \Pi[V_i] \quad \text{where} \quad \sigma_i^2 = \frac{\left\| \Pi[V_i](x_0) \right\|^2}{\dim(V_i)}.$$

This shows that, in general, important quantities are:

- The variance $\mathbb{V}[\|\mu_{\mathcal{O}}\|]$, a measure of *deviation from orthogonality* of \mathcal{O}
- The ratio $\sigma_{\max}^2/\sigma_{\min}^2$, a measure of *homogeneity* of \mathcal{O} .

Orthonormalization

Proposition: Let $\mathcal{O} \subset \mathbb{R}^n$ be the orbit of a representation, potentially non-orthogonal, $\mu_{\mathcal{O}}$ its uniform measure, $\Pi[\langle \mathcal{O} \rangle]$ the projection on its span, and $\sigma_{\max}^2, \sigma_{\min}^2$ the top and bottom nonzero eigenvalues of $\Sigma[\mu_{\mathcal{O}}]$.

Besides, let ν be a measure, $\Sigma[\nu]$ its covariance matrix, $\epsilon > 0$ and $\Pi_{\Sigma[\nu]}^{>\epsilon}$ the projection on the subspace spanned by eigenvectors with eigenvalue at least ϵ .

If $W_2(\mu_{\mathcal{O}}, \nu)$ is small enough, then we have the following bound between the pushforward measures after Step 1:

$$W_{2}\left(\sqrt{\Sigma[\mu_{\mathcal{O}}]^{+}}\Pi[\langle\mathcal{O}\rangle]\mu_{\mathcal{O}}, \sqrt{\Sigma[\nu]^{+}}\Pi_{\Sigma[\nu]}^{>\epsilon}\nu\right)$$

$$\leq 8(n+1)^{3/2}\left(\frac{\sigma_{\max}^{3}}{\sigma_{\min}^{3}}\right)\left(\frac{W_{2}(\mu_{\mathcal{O}},\nu)}{\sigma_{\min}}\right)^{1/2}\left(\left(\frac{\mathbb{V}[\|\mu_{\mathcal{O}}\|]}{\sigma_{\min}^{2}}\right)^{1/2} + \frac{W_{2}(\mu_{\mathcal{O}},\nu)}{\sigma_{\min}}\right)^{1/2}$$

Proof: Consequence of Davis-Kahan theorem, together with

$$\left\|\Sigma[\mu_{\mathcal{O}}]^{-1/2} - \Sigma[\nu]^{-1/2}\right\|_{\rm op} \le \frac{\sqrt{2}}{\sigma_{\rm min}^2} \cdot \left(2\mathbb{V}[\|\mu_{\mathcal{O}}\|]^{1/2} + W_2(\mu_{\mathcal{O}},\nu)\right)^{1/2} \cdot W_2(\mu_{\mathcal{O}},\nu)^{1/2}.$$

Lie-PCA

Ideal Lie-PCA: Suppose that \mathcal{O} is an orbit of the representation $\phi \colon G \to M_n(\mathbb{R})$, and $\mu_{\mathcal{O}}$ the uniform measure on it. We define

$$\Lambda_{\mathcal{O}}(A) = \int \Pi \left[\mathbf{N}_{x} \mathcal{O} \right] \cdot A \cdot \Pi \left[\langle x \rangle \right] \mathrm{d}\mu_{\mathcal{O}}(x).$$

Proposition: Its kernel is eual to $\mathfrak{sym}(\mathcal{O})$. Moreover, when $\mathcal{O} = S^{n-1}$, its nonzero eigenvalues are exactly δ_n and δ'_n where

$$\delta_n = \frac{2(n-1)}{n(n(n+1)-2)}$$
 and $\delta'_n = \frac{1}{n}$

Proof: Show that $\Lambda_{\mathcal{O}}$ is equivariant with respect to the action of G by conjugation:

$$\phi(g)\Lambda(A)\phi(g)^{-1} = \Lambda\left(\phi(g)A\phi(g)^{-1}\right)$$

Then use Schur's lemma.

Empirical observation: More generally, the nonzero eigenvalues of $\Lambda_{\mathcal{O}}$ belong to $[1/n^2, 1/n]$ when \mathcal{O} is *homogenous*, i.e., $\sigma_{\max}^2/\sigma_{\min}^2 = 1$.

Lie-PCA

Stability: Comparing

$$\Lambda(A) = \sum_{1 \le i \le N} \widehat{\Pi} \big[\mathcal{N}_{x_i} X \big] \cdot A \cdot \Pi \big[\langle x_i \rangle \big] \quad \text{and} \quad \Lambda_{\mathcal{O}}(A) = \int \Pi \big[\mathcal{N}_x \mathcal{O} \big] \cdot A \cdot \Pi \big[\langle x \rangle \big] \mathrm{d}\mu_{\mathcal{O}}(x).$$

amounts to quantifying the quality of normal space estimation. We use local PCA:

$$\widehat{\Pi} \big[\mathcal{N}_{x_i} X \big] = I - \Pi_{x_i}^{l,r} [X],$$

where $\Pi_{x_i}^{l,r}[X]$ is the projection matrix on any l top eigenvectors of the *local covariance matrix* $\Sigma_{x_i}^r[X]$ centered at x_i and at scale r, itself defined as

$$\Sigma_{x_i}^r[X] = \frac{1}{|Y|} \sum_{y \in Y} (y - x_i) (y - x_i)^\top,$$

where $Y = \{y \in X \mid ||y - x_i|| \le r\}$, the set input points at distance at most r from x_i .

Measure-theoretic formulation: If μ is a measure on \mathbb{R}^n , we define its *local covariance matrix* centered at x at scale r as

$$\Sigma_x^r[\mu] = \int_{\mathcal{B}(x,r)} (y-x)(y-x)^\top \frac{d\mu(x)}{\mu(\mathcal{B}(x,r))}.$$

Lie-PCA

Bias-variance tradeoff: Let $\mu_{\mathcal{M}}$ be measure on a submanifold $\mathcal{M} \subset \mathbb{R}^n$ of dimension $l, x \in \mathcal{M}$, ν a measure on \mathbb{R}^n and $y \in \operatorname{supp}(\nu)$. We decompose

$$\frac{\left\|\frac{1}{l+2}\Pi[\mathbf{T}_{x}\mathcal{M}] - \frac{1}{r^{2}}\Sigma_{y}^{r}[\nu]\right\|_{\mathbf{F}}}{\left\|\frac{1}{l+2}\Pi[\mathbf{T}_{x}\mathcal{M}] - \frac{1}{r^{2}}\Sigma_{x}^{r}[\mu_{\mathcal{M}}]\right\|_{\mathbf{F}}} + \underbrace{\left\|\frac{1}{r^{2}}\Sigma_{x}^{r}[\mu_{\mathcal{M}}] - \frac{1}{r^{2}}\Sigma_{y}^{r}[\mu_{\mathcal{M}}]\right\|_{\mathbf{F}}}_{\text{spatial stability}} + \underbrace{\left\|\frac{1}{r^{2}}\Sigma_{y}^{r}[\mu_{\mathcal{M}}] - \frac{1}{r^{2}}\Sigma_{y}^{r}[\mu_{\mathcal{M}}]\right\|_{\mathbf{F}}}_{\text{measure stability}}$$

Lemma: If the parameters are chosen correctly, this is

$$\lesssim r + ||x - y|| + \left(\frac{W_2(\mu, \nu)}{r^{l+1}}\right)^{\frac{1}{2}}.$$

Corollary: We deduce a bound between Lie-PCA operators:

$$\|\Lambda_{\mathcal{O}} - \Lambda\|_{\mathrm{op}} \leq \sqrt{2}\rho \left(r + 4\left(\frac{W_2(\mu_{\mathcal{O}}, \mu_X)}{r^{l+1}}\right)^{1/2}\right).$$

Rigidity of Lie subalgebras

In Step 3, we consider the bottom eigenvectors A_1, \ldots, A_d of Lie-PCA, and solve

$$\arg\min\left\|\Pi\left[\langle A_i\rangle_{i=1}^d\right] - \Pi\left[\widehat{\mathfrak{h}}\right]\right\| \quad \text{s.t.} \quad \widehat{\mathfrak{h}} \in \mathcal{G}(G,\mathfrak{so}(n)),$$

where $\mathcal{G}(G, \mathfrak{so}(n))$ is the subspace of $\mathfrak{so}(n)$ consisting of the Lie subalgebras pushforward of \mathfrak{g} by a representation.

The set $\mathcal{G}(G, \mathfrak{so}(n))$ has many connected components, one for each *orbit-equivalence* class of representations.

Let \mathfrak{h} be the actual subalgebra we are looking for. We want to make sure that the minimizer belongs to the connected component of \mathfrak{h} .

The distance from $\langle A_i \rangle_{i=1}^d$ to \mathfrak{h} must be lower than the *reach* of $\mathcal{G}(G, \mathfrak{so}(n))$. In this context, it is related to the *rigidity* of \mathfrak{h} .

Lemma: Consider the subset of $\mathcal{G}(G, \mathfrak{so}(n))$ with weights at most ω_{\max} . Then its ridigity satisfies $\Gamma(G, n, \omega_{\max}) \ge 4/(n\omega_{\max}^2).$

- 1. Lie theory
- 2. Applications of the algorithm
- 3. Description of the algorithm
- 4. Proof of robustness
- 5. Conclusion

Next goals

Lie based interporlation: development of newer computer vision techniques for both interpolation and analysis

G-conv nets: there are neural networks architectures invariant to representations of Lie group that may allow for incorporating our algorithm as a detection step

Ínría_

Next goals

Application to Hamiltonian mechanics: Noether's theorem pedicts that every conserved quantity is related to an action of a Lie group G on a sympletic manifold \mathcal{M} called the phase space

Extension to actions on manifolds: suppose G has an action $\rho : G \to \text{Diff}(M)$ on a manifold M. Then this extends to an infinite dimensional representation $\tilde{\rho} : G \to GL(\mathcal{F}(M))$, the set of smooth maps $f : M \to \mathbb{R}$. This defines a representation $d\tilde{\rho}$ which maps the Lie algebra elements \mathfrak{g} to a subspace of the infinite dimensional Lie algebra of vector fields $\mathcal{X}(M)$ with Lie derivatives as brackets

$$\begin{array}{ccc} G & & \stackrel{\tilde{\rho}}{\longrightarrow} & GL(\mathcal{F}(M)) \\ & & & \exp & \\ g & & \stackrel{d\tilde{\rho}}{\longrightarrow} & \mathfrak{gl}((\mathcal{F}(M)) = \mathcal{X}(M)) \end{array}$$

References

• Cahill, J., Mixon, D. G., and Parshall, H. (2020). *Lie PCA: density estimation for symmetric manifolds.* CoRR, abs/2008.04278.

LieDetect