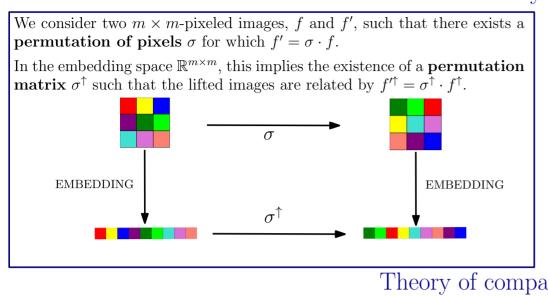
Detection of compact Lie group representations in point clouds and image data

Henrique Ennes and Raphaël Tinarrage — FGV (Rio de Janeiro, Brazil)

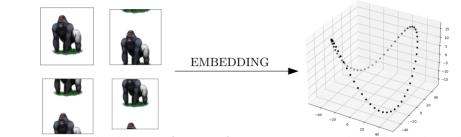
Transformations by permuting pixels



A group of $n \times n$ matrices, $G \subseteq GL(n, \mathbb{F})$, is a **compact Lie group** if, besides having its usual matrix product \cdot and inversion smooth, is endowed with a compact manifold structure in $\mathbb{F}^{n \times n}$ ($\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$).

Lie group	Symbol	Definition	dim	Lie algebra
orthogonal group	O(n)	$A^T = A^{-1}$	$\frac{n(n-1)}{2}$	$\mathfrak{o}(n)$
special orthogonal	SO(n)	$A^T = A^{-1}$	$\frac{n(n-1)}{2}$	$\mathfrak{so}(n)$
group		$\det A = 1$	-	
torus group	T^n	$SO(2)^n$	n	$\mathfrak{t}(n)$
unitary group	U(n)	$A^{\dagger} = A^{-1}$	n^2	$\mathfrak{u}(n)$
special unitary	SU(n)	$A^{\dagger} = A^{-1}$	n(n-1)	$\mathfrak{su}(n)$
group		$\det A = 1$		

Although discrete, the embedding of a set of images $\{f_i\}$ generated by the application of a group of permutations Σ lies close to a **smooth geometric** structure in $\mathbb{R}^{m \times m}$, whose nature may be useful in several computer vision problems.



Lemma: the embeddings of a set of images generated as above described lie on the orbit of some compact Lie group representation.

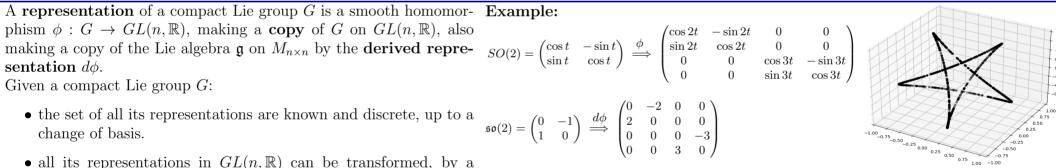
Theory of compact Lie groups

The tangent space at the identity of a Lie group G is called its **Lie algebra**, denoted by \mathfrak{g} , and forms a well-understood structure closed under the usual matrix commutation $[\cdot, \cdot]$.

Example:

$$SO(2)$$
 $\begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$
 $GEOMETRIC$
 $REALIZATION$
 $\mathfrak{so}(2)$
 $\begin{pmatrix} 0 & -t \\ t & 0 \end{pmatrix}$
 \mathfrak{ac}
 e

The Lie algebra allows for a "linear" simplification of the group. **Example:** while the brackets of \mathfrak{t}^3 are trivial, for $\mathfrak{so}(3)$, they are isomorphic to the usual cross-product in \mathbb{R}^3 .



• all its representations in $GL(n,\mathbb{R})$ can be transformed, by a change of basis, to be **orthogonal** (i.e., a subgroup of O(n)).

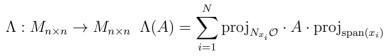
The algorithm

Input: a finite sample of points $\{x_i\}_{i=1}^N$ close or included in an **orbit** $\mathcal{O} = \phi(G) \cdot x_1$ Step 3: optimize, on $Q \in O(n)$, the programs of a compact Lie group G with a representation ϕ on the embedding space \mathbb{R}^n . $\arg\min\sum_{j=1}^{\dim G} \|\Lambda(QA_jQ^T)\| \quad \text{s.t.}(A_1,\ldots,A_{\dim}G) \in \mathcal{V}_{\text{Lie}}(G,n)$ **Dutput:** an estimation of the orbit, $\hat{\mathcal{O}}$ and the derived representation $(d\hat{\phi}, [\cdot, \cdot])$.

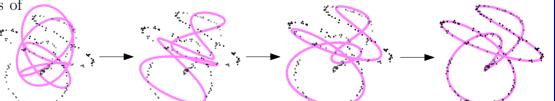
Step 1: orthogonalize the representation through $\mathcal{O} \leftarrow M\mathcal{O}$ for M = $\sqrt{-1/2}$

$$\left(\frac{1}{N}\sum_{i=1}^{N}x_{i}x_{i}^{T}\right)$$

Step 2: [J Cahill, DG Mixon, H Parshall, 2023] estimate the normal spaces of $\mathcal{O}, N_{x_i}\mathcal{O},$ to calculate the operator



where $\mathcal{V}_{\text{Lie}}(G, n)$ is a list of all derived representations of G in \mathbb{R}^n .

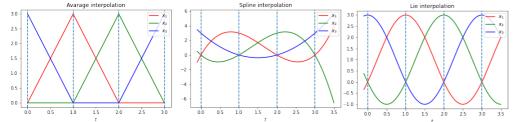


Theorem: if $\{x_i\}_{i=1}^N$ is a sample of the uniform measure on \mathcal{O} , then the Hausdorff distance between \mathcal{O} and the reconstructed orbit, $\hat{\mathcal{O}}$, has an upper bound. Python implementation https://github.com/HLovisiEnnes/LieDetect

Applications

The application of the algorithm allows for the **reconstruction of the orbit**, retriving the geometric structure of the image embeddings.

This suggests a whole new kind of **image interpotation**.



The knowledge of the exact Lie group allows for the application of **abstract** harmonic analysis, a generalization of Fourier analysis that suggests linear solutions to regression problems involving images.

